6 research outputs found

    Spanish Cell Therapy Network (TerCel) : 15 years of successful collaborative translational research

    Get PDF
    In the current article we summarize the 15-year experience of the Spanish Cell Therapy Network (TerCel), a successful collaborative public initiative funded by the Spanish government for the support of nationwide translational research in this important area. Thirty-two research groups organized in three programs devoted to cardiovascular, neurodegenerative and immune-inflammatory diseases, respectively, currently form the network. Each program has three working packages focused on basic science, pre-clinical studies and clinical application. TerCel has contributed during this period to boost the translational research in cell therapy in Spain, setting up a network of Good Manufacturing Practice-certified cell manufacturing facilities- and increasing the number of translational research projects, publications, patents and clinical trials of the participating groups, especially those in collaboration. TerCel pays particular attention to the public-private collaboration, which, for instance, has led to the development of the first allogeneic cell therapy product approved by the European Medicines Agency, Darvadstrocel. The current collaborative work is focused on the development of multicenter phase 2 and 3 trials that could translate these therapies to clinical practice for the benefit of patients

    Spanish cell therapy network (TerCel): 15 years of successful collaborative translational research

    No full text
    In the current article we summarize the 15-year experience of the Spanish Cell Therapy Network (TerCel), a successful collaborative public initiative funded by the Spanish government for the support of nationwide translational research in this important area. Thirty-two research groups organized in three programs devoted to cardiovascular, neurodegenerative and immune-inflammatory diseases, respectively, currently form the network. Each program has three working packages focused on basic science, pre-clinical studies and clinical application. TerCel has contributed during this period to boost the translational research in cell therapy in Spain, setting up a network of Good Manufacturing Practice certified cell manufacturing facilities and increasing the number of translational research projects, publications, patents and clinical trials of the participating groups, especially those in collaboration. TerCel pays particular attention to the public-private collaboration, which, for instance, has led to the development of the first allogeneic cell therapy product approved by the European Medicines Agency, Darvadstrocel. The current collaborative work is focused on the development of multicenter phase 2 and 3 trials that could translate these therapies to clinical practice for the benefit of patients

    Spanish cell therapy network (TerCel): 15 years of successful collaborative translational research

    No full text
    In the current article we summarize the 15-year experience of the Spanish Cell Therapy Network (TerCel), a successful collaborative public initiative funded by the Spanish government for the support of nationwide translational research in this important area. Thirty-two research groups organized in three programs devoted to cardiovascular, neurodegenerative and immune-inflammatory diseases, respectively, currently form the network. Each program has three working packages focused on basic science, pre-clinical studies and clinical application. TerCel has contributed during this period to boost the translational research in cell therapy in Spain, setting up a network of Good Manufacturing Practice certified cell manufacturing facilities and increasing the number of translational research projects, publications, patents and clinical trials of the participating groups, especially those in collaboration. TerCel pays particular attention to the public-private collaboration, which, for instance, has led to the development of the first allogeneic cell therapy product approved by the European Medicines Agency, Darvadstrocel. The current collaborative work is focused on the development of multicenter phase 2 and 3 trials that could translate these therapies to clinical practice for the benefit of patients

    Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro ; implications for tissue engineering and repair in the nervous system

    Full text link
    Glial cell line-derived neurotrophic factor (GDNF) mRNA is highly expressed by dental pulp cells (DPCs) prior to the initiation of dental pulp innervation. We show that radioactively labelled exogenous GDNF is retrogradely transported from neonatal teeth and vibrissae to the trigeminal neurons, indicating that GDNF acts as a classical neurotrophic factor in the trigeminal system. We also show that DPCs from both rats and humans produce nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and GDNF mRNAs in vitro , promote the survival and phenotypic characteristics of embryonic dopaminergic (DA) neurons and protect DA neurons against the neurotoxin 6-hydroxy-dopamine (6-OHDA) in vitro . By using inhibitory antibodies to NGF, BDNF and GDNF, we show that the promotion of DA neuron survival relates to the production and release of neurotrophic proteins by DPCs in vitro . We suggest that in vivo production of neurotrophic factors by DPCs play roles in tooth innervation. However, continued production of neurotrophic factors by the DPCs might have wider implications. We propose that the dental pulp is a viable source of easily attainable cells with possible potential for development of autologous cell transplantation therapies. We also show that a population of neural crest-derived dental pulp cells acquire clear neuronal morphology and protein expression profile in vitro , indicating the presence of a cell population in the dental pulp with neuronal differentiation capacity that might provide additional benefits when grafted into the CNS.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71809/1/j.0953-816X.2004.03314.x.pd
    corecore