12,333 research outputs found
Giant monopole resonance and nuclear compression modulus for 40Ca and 16O
Using a collective potential derived on the basis of the Generator Coordinate
Method with Skyrme interactions we obtain values for the compression modulus of
40Ca which are in good agreement with a recently obtained experimental value.
Calculated values for the compression modulus for 16O are also given. The
procedure involved in the derivation of the collective potential is briefly
reviewed and discussed.Comment: 14 pages, no figures, two tables, REVTE
Soliton Stability in Systems of Two Real Scalar Fields
In this paper we consider a class of systems of two coupled real scalar
fields in bidimensional spacetime, with the main motivation of studying
classical or linear stability of soliton solutions. Firstly, we present the
class of systems and comment on the topological profile of soliton solutions
one can find from the first-order equations that solve the equations of motion.
After doing that, we follow the standard approach to classical stability to
introduce the main steps one needs to obtain the spectra of Schr\"odinger
operators that appear in this class of systems. We consider a specific system,
from which we illustrate the general calculations and present some analytical
results. We also consider another system, more general, and we present another
investigation, that introduces new results and offers a comparison with the
former investigations.Comment: 16 pages, Revtex, 3 f igure
Color screening in a constituent quark model of hadronic matter
The effect of color screening on the formation of a heavy quark-antiquark
() bound state--such as the meson--is studied using a
constituent-quark model. The response of the nuclear medium to the addition of
two color charges is simulated directly in terms of its quark constituents via
a string-flip potential that allows for quark confinement within hadrons yet
enables the hadrons to separate without generating unphysical long-range
forces. Medium modifications to the properties of the heavy meson, such as its
energy and its mean-square radius, are extracted by solving Schr\"odinger's
equation for the pair in the presence of a (screened)
density-dependent potential. The density dependence of the heavy-quark
potential is in qualitative agreement with earlier studies of its temperature
dependence extracted from lattice calculations at finite temperature. In the
present model it is confirmed that abrupt changes in the properties of the
-meson in the hadronic medium ({\it plasma}), correlate strongly with
the deconfining phase transition.Comment: 7 pages, 3 figures, submitted to PRC for publication, uses revtex
- …