5,855 research outputs found
Color screening in a constituent quark model of hadronic matter
The effect of color screening on the formation of a heavy quark-antiquark
() bound state--such as the meson--is studied using a
constituent-quark model. The response of the nuclear medium to the addition of
two color charges is simulated directly in terms of its quark constituents via
a string-flip potential that allows for quark confinement within hadrons yet
enables the hadrons to separate without generating unphysical long-range
forces. Medium modifications to the properties of the heavy meson, such as its
energy and its mean-square radius, are extracted by solving Schr\"odinger's
equation for the pair in the presence of a (screened)
density-dependent potential. The density dependence of the heavy-quark
potential is in qualitative agreement with earlier studies of its temperature
dependence extracted from lattice calculations at finite temperature. In the
present model it is confirmed that abrupt changes in the properties of the
-meson in the hadronic medium ({\it plasma}), correlate strongly with
the deconfining phase transition.Comment: 7 pages, 3 figures, submitted to PRC for publication, uses revtex
Semente genética de soja - origem e procedimentos técnicos de produção - série sementes.
Primeira fase de seleção. Segunda fase de seleção.bitstream/CNPSO-2009-09/28932/1/circtec66.pd
Self Consistent and Renormalized particle-particle RPA in a Schematic Model
The dynamical effects of ground state correlations for excitation energies
and transition strengths near the superfluid phase transition are studied in
the soluble two level pairing model, in the context of the particle-particle
self consistent Random Phase Approximation (SCRPA). Exact results are well
reproduced across the transition region, beyond the collapse of the standard
particle-particle Random Phase Approximation. The effects of two-body
correlation in the SCRPA are displayed explicitly.Comment: 11 pages, revtex, 3ps figures, to appear in Phys. Rev.
Quantum entanglement of bound particles under free center of mass dispersion
On the basis of the full analytical solution of the overall unitary dynamics,
the time evolution of entanglement is studied in a simple bipartite model
system evolving unitarily from a pure initial state. The system consists of two
particles in one spacial dimension bound by harmonic forces and having its free
center of mass initially localized in space in a minimum uncertainty wave
packet. The existence of such initial states in which the bound particles are
not entangled is pointed out. The entanglement of the two particles is shown to
be independent of the wavepacket mean momentum, and to increase monotonically
in a time scale distinct from that of the spreading of the center of mass
wavepacket.Comment: 17 pages, 5 figure
Violation of the Ikeda sum rule and the self-consistency in the renormalized quasiparticle random phase approximation and the nuclear double-beta decay
The effect of the inclusion of ground state correlations into the QRPA
equation of motion for the two-neutrino double beta () decay
is carefully analyzed. The resulting model, called renormalized QRPA (RQRPA),
does not collapse near the physical value of the nuclear force strength in the
particle-particle channel, as happens with the ordinary QRPA. Still, the
transition amplitude is only slightly less sensitive on
this parameter in the RQRPA than that in the plain QRPA. It is argued that this
fact reveals once more that the characteristic behaviour of the
transition amplitude within the QRPA is not an artifact of
the model, but a consequence of the partial restoration of the spin-isospin
symmetry. It is shown that the price paid for bypassing the collapse in
the RQRPA is the violation of the Ikeda sum rule.Comment: 16 pages, latex, 3 postscript figure
- …