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Abstract

The Readout Unit (RU) for the LHCb data acquisition
and trigger system is a programmable eventbuilder
interface, taking input from up to four Gbit/s data link
receivers, and outputting to single PCI nodes of a readout
network. It has been conceived as a versatile and
programmable prototype module that uses the CERN S-
Link as link-receiver protocol [1], 9U- IEEE960 power
and mechanics, and PCI bus protocols for the readout
network. The FPGA-based receiver stage merges
incoming event-fragments into subevent blocks that are
stored in an intermediate subevent buffer. Subevents are
forwarded by an FPGA-based eventbuilder interface logic
that is directly connected via the PCI bus with the
protocols of the readout network. An embedded I/O
processor provides remote control over all input and
output functionalities, via a 100Mbit/s LAN connection to
the experiment control system.

1.  PURPOSE OF THE READOUT UNIT
The Readout Unit (RU) is being developed to fulfil the

functionality of the first stage of the LHCb data
acquisition system [2] [ Figure 1].

Figure 1:   LHCb DAQ system

The overview below [Figure 2] shows it's top level
architecture between S-Link receiver inputs and PCI
outputs. The role of the merger is to collect event-
fragments from the input  FiFos and store them in the
subevent buffer. The subevent builder assembles these
into subevent blocks. For complete event building,

subevents are transferred via the subevent builder
interface to a  PCI bus  compliant readout  network.

The RU is also equipped with an embedded CPU
which is  connected via  a LAN to the remote control and
monitoring  system.

Figure 2:  architecture of Readout Unit

1.1 Bandwidth  requirements for LHCb

The nominal requirements for a Readout Unit are given
by the LHCb level-1 trigger rate and event sizes per input
link of the RU. The detector with the highest occupancy
will generate max. 1 kByte per event including some
formatting overhead.  With four input  links and a 40 kHz
level-1 rate, this corresponds to a 160 Mbyte/s sustained
throughput requirement for the RU. The requirements for
the individual parts of the RU are summarised in [Table
1] below. Each link input requires 40 Mbyte/s input
bandwidth,  the output bandwidth  is chosen  264 Mbyte/s
by using 64-bit 33-MHz PCI (528 Mbytes/s for 66 MHz).

PCI output 64bit@33MHz ( 66 MHz)
Subevent Buffer 1 Mbyte
Peak input per link 40 Mbyte/s
Integral   BW 160 Mbyte/s

      Table 1:  Bandwidth  Requirements

2.  THE RU MODULE
The Readout Unit is a 9U motherboard  with modular

I/O connections for  data  and control  [Figure 3]. The
input stage receives data fragments from front-end links
via four S-Link receivers. Input FiFos are used to
derandomize input data and  to convert the output  to a
64-bit  format. The subevent merger (SEM) logic scans
the FiFos, which share a 64 bit very high bandwidth bus,
and  writes their data to the subevent buffer (SEB),
together with a directory entry. The output stage is the
eventbuilder interface (EBI) which combines the data
from  the SEB into subevents which are then transmitted
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via  the PCI bus to the readout network (RN). The
monitoring and control unit (MCU) provides remote
control and access to data via a LAN connection. An
auxiliary PCI slot allows for extended applications of  the
RU, such as the use of a Timing and Controls (TTC)
receiver card [3].

Figure 3:  Units and connections of Readout Unit module

2.1  The subevent merger (SEM)

The SEM logic scans the  64-bit-wide FiFo outputs in a
round-robin fashion and transfers event data blocks to the
dual-port subevent buffer (SEB). After writing a block to
the SEB, a pointer to its location is added to the directory
table in the SEB.

As shown dotted in [Figure 3] there is a multiplexer
option to transmit the input data unchanged directly to a
single S-link transmitter output. In normal operation
however subevents are built from the stored event-data,
which are then sent as one block either to the PCI, or the
Slink output.

2.2 Subevent buffer (SEB)

The SEB is physically a dual-port memory between the
SEM and the EBI. Most of its capacity1 is used for storing
data, a small part is used a pointer directory. In order to
support LHCb’s “phased readout protocol” the SEB must
be accessible like memory via the PCI network interface
for selective readout. For the LHCb “full readout
protocol”, all events residing in the SEB are transferred to
the readout network, using a fully event-driven data flow
concept.

2.2  Eventbuilder Interface (EBI)

 The EBI logic is the RU’s output stage. It generates
subevents from the data in the SEB by identifying all
blocks which belong to the same event number. Such
identified subevents are framed and reformatted as single
output entities called subevents. The EBI is also part of
the full eventbuilding system of the DAQ system and
therefore transfers subevents according to a chosen
readout protocol and network technology. For this
prototype, the PCI standard industry bus is used as
convenient and well-supported network interface between
the RU's FPGA logic and the network. The full or phased

                                                          
1 1 Mbyte  is the nominal SEB capacity for the  RU prototype

LHCb eventbuilding protocols can be implemented using
PCI either for message passing or for memory-like
access.

2.3  The Monitoring and Control Unit (MCU)

A commercial plug-in processor card [4] is used for
remote monitoring and control via a LAN connection to
the Experiment Control System (ECS). Tasks of the MCU
include monitoring the SEB buffer status, error handling
and reporting and remote control of the operating
parameters of the RU. Apart from this, the MCU can also
initialise the PCI bus, re-load FPGA configuration
bitmaps, access status registers inside the FPGAs,
implement high-level data transport protocols, or emulate
RU functions before implementing them in FPGA
hardware. The MCU firmware will be developed using a
cross-compiler (for Intel i960) on host PCs with calls to
low level monitor services.

2.4 The Front-end Link Receivers (FLR)
For the RU prototype we opted for the use of the 32 bit S-
Link protocols of the ATLAS experiment at the link
receiver side. The use of S-link mezzanine cards allows
for a free choice of either using short (copper) or long
(fiber) technologies for the input links. At the S-link
connector the same 32 bit framing protocol is available
for all link technologies.

2.5  Network Interface (NI)

 This is a network-specific PCI card which adapts a given
readout network technology to the PCI output bus of the
RU.
Since standard PCI cards are mechanically not compatible
with 9U crate mechanics, a final version of the RU
requires that this card is either available as PMC
mezzanine or that its logic can be placed on the RU
motherboard. An example of a PMC network interface
can be found in [5]. For tests with standard PCI cards, a
simple PCI-PMC adapter card may be used.

3.  READOUT PROTOCOLS
The transfer of data between the RU's and the 2/3rd

level CPU farm computers requires a transfer protocol
between the RU’s EBI logic and the 2nd/3rd level farm
CPU's [6].

The full readout protocol of LHCb is meant to be
simple: a continuous, write-only data transfer is
maintained from source to destinations. The phased
readout protocol only transfers subevents which have
been pre-selected by the 2nd level decision. This
drastically reduces the amount of data to be transferred
over the network, however its implementation, i.e.
selective readout, is complex. Both readout protocols are
to be studied with the Readout Unit prototypes.
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3.1 Full readout

Under the full readout protocol, the EBI output logic
autonomously writes subevents via the PCI bus and the
readout network (RN) to a destination CPU. The
transmission via the RN can be either a memory mapped
PCI-to-PCI transfer between sources and destinations
(transparent), or a DMA between the SEB and a
destination buffer (buffered I/O). The choice depends
also on the possibilities of the RN.

Subevents are chained event-blocks in the SEB, with
pointers stored in the SEB directory.  Due to the use of
circular buffers there is no need to implement a garbage
collection mechanism. Buffer overflow in the SEB is
prohibited via a Xon/Xoff return signal, generated by the
input stage of the SEB logic.

3.2  Phased readout

Under this protocol, only small subsets of events are
transmitted for making a 2nd level decision whilst the rest
of the event is queued in the SEB. Since the remainder of
the data is only transferred after a positive level-2
decision, the bandwidth across the RN network can be
considerably reduced: non-accepted events are discarded
from the SEB. For this protocol, the EBI logic needs to
understand a set of messages like selective accept and
reject from the RN.

4.  SUBEVENT BUILDING
Subevents are built by the EBI output logic from the

event-fragments stored in the subevent buffer. The event-
data fragments stored in the SEB are identified by their
event numbers which is used by the EBI output stage to
build and frame subevents. The process of event building
from a buffer is very tolerant for arrival spreads and
allows in particular  receiving several fragments of the
same ID via the same link.

Figure 4: Link input format convention

4.1  Input Data formats

A very simple input format convention is adopted for
the Readout Unit prototype [Figure 4]. The framing
overhead is minimal and consists of two 32-bit words in

the header and one in the trailor. The start and end of the
input block is identified via a hardware flag bit. In order
to ease subevent building, the event identifier is contained
in the header word. 

The block size and the error status are contained in the
trailor word. Four LSB bits are used by S-link.

3.2  Subevent framing

A recursive and simple way of generating subevent
blocks has been adopted. The data blocks of event frames
belonging to the saem event number are concatenated
behind the same  header word as the input frames [Figure
5]. This requires that data blocks have their own
consistent format which is transparent to the RU. The size
and status fields for subevents are recalculated and
appended as trailor word. An error block is inserted
between the last data block and the trailor only in case of
errors. The latter is indicated in the status word.

Figure 5: Recursive subevent framing of input events

5. TECHNICAL IMPLEMENTATION
The RU module 's technical layout is shown is shown

below [Figure 6].

 Figure 6: RU technical implementation

5.1 Internal bus connections

At the input side, the 32 bit S-Link words are
converted via interleaved 32 bit FiFos to a 64 bit SEB bus
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which is read out by the SEM FPGA with a clock rate of
50 MHz to provide a raw bandwidth of 400 Mbyte/s.

Input data are stored in a 64-bit-wide dual port memory
interfaced between the SEM input and the EBI output
stage. The latter consists of two parallel FPGAs (EBI and
AUX) which share the 64-bit SEB bus at their inputs and
the 64-bit PCI bus at their outputs. The reason for the
parallel use of two FPGA's, apart from lower cost of the
FPGAs is the increased PCI bandwidth which can be
achieved with two tandem PCI masters2. The MCU is
connected to the 64-bit PCI bus and its 32-bit memory
bus is connected to the EBI FPGA. The latter allows that
the MCU can map the SEB into its local memory space.
A dedicated, 8-bit-wide i960 bus interconnects all FPGAs
with the MCU. This allows for FPGA configuration and
access to control of status registers via the MCU, and
further via a remotely connected server. The MCU
provides a secondary, 32-bit PCI port which may be used
for auxiliary PCI cards.

5.2  Motherboard layout

 The RU prototype is implemented as 9U motherboard
which only takes power from an IEEE-960 crate
mechanics. All 6 mezzanines for data input (4) and for
data output (2) are located on either front-or backpanel of
the motherboard. A preview on the module (currently
under design) is shown below [Figure 7]

Figure 7: A preview of the 9U motherboard

5.3 Board design tools

The schematic capture was completed using Cadence
Concept. The 12-layer board is designed using Cadence
Allegro.
For critical buses design like for the 64 bit FiFo bus and
the 66-MHz PCI bus, a signal integrity study using
Cadence SpecctraQuest and IBIS models from different

                                                          
2 In a future RU version we expect that a single FPGA can be
used.

vendors was carried out. The results of this study also
influenced the placement of components in the PCB
[Figure 8].

Figure 8: Floorplanning with Cadence Allegro

5.4 FPGA technology

Lucent Technologies’ ORCA 3TP12 device [7] has
been chosen for both FPGAs (EBI and AUX) in the
output stage. This device has a 64-bit 66-MHz embedded
master/target  PCI hard core interface, as well as an 8-bit
embedded hard core interface to i960 processors. The
latter interfaces directly to the MCU’s local bus and
allows for remote configuration, program readback and
access to internal FPGA. Approximately 35k equivalent
logic gates are available for the EBI logic.

The SEM FPGA in the input stage (ORCA 3T55) is
also a member of Lucent Technologies’ 3T family. The
differences with the previous device are the available user
logic size (up to 55k equivalent gates). This device has
also an i960 interface but no PCI core [8].

5.5 FPGA development tools

Like for previous design projects we use a VHDL
design methodology for ORCA FPGAs from Lucent
Technologies. After a VHDL simulation with Cadence
LEAPFROG, the VHDL output is synthesised by
Exemplar’s LEONARDO to generate an EDIF output
which is used by Lucent's Foundry tools to place and
route all required FPGA resources. The bitstream output
is programmed into a Flash Eprom, which during power-
up transfers its contents to all FPGAs in the Readout Unit.
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6. STATUS AND OUTLOOK
The Readout Unit project is a joint activity of the

CERN EP-ED electronics group and the LHCb
experiment. A series of meetings [9] have led to the
design decisions for the first prototypes to be built in
1999. Since technology choices for input links, readout
network and control system are pending, we have opted
for a modular approach using S-Link mezzanines for the
link input, PCI for the readout network and T-base 100
LAN technology for the control system.

This module is meant to be reproduced in small
quantity and serves mainly the purpose for developing the
final RU concept. A second-generation module will be
started when technology and protocol choices have been
taken.
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