120 research outputs found

    Predictable and robust performance of a Bi-2223 superconducting coil for compact isochronous cyclotrons

    Get PDF
    The development of ever smaller medical particle accelerators is motivated by a desire to make proton therapy accessible to more patients. Reducing the footprint of particle accelerators and subsequently proton therapy facilities allows for cheaper and broader usage of proton therapy. By employing superconducting technologies for field shaping, the size of particle accelerators can be reduced further below what is possible with saturated iron. This article discusses experiments on a first-of-its-kind double pancake (DP), and an assembly of six DP coils, designed to be used as a so-called ‘flutter coil’ for a compact isochronous cyclotron for proton therapy, fabricated from high-temperature superconducting (HTS) Bi 2 − x Pbx Sr2Ca2Cu3Oy (Bi-2223) tape. The coils were mounted under pre-stress within a stainless-steel structure to maintain mechanical stability during the experiments. The critical current as a function of the temperature of both coils was measured in a conduction-cooled setup. A model describing the coils, based on tape data, was created and revealed that the measurements were in excellent agreement with the predictions. Additional experiments were performed to study the quench and thermal runaway behaviour of the HTS coils, determining whether such coils can be protected against fault scenarios, using realistic quench-detection levels and discharge extraction-rates. These experiments demonstrate that the coils are very robust and can be well protected against quenches and thermal-runaway events using common quench-protection measures with realistic parameters.</p

    Neurobiological basis and risk factors of persistent fatigue and concentration problems after COVID-19: study protocol for a prospective case–control study (VeCosCO)

    Get PDF
    Introduction: The risk factors for persistent fatigue and cognitive complaints after infection with SARS-CoV-2 and the underlying pathophysiology are largely unknown. Both clinical factors and cognitive-behavioural factors have been suggested to play a role in the perpetuation of complaints. A neurobiological aetiology, such as neuroinflammation, could be the underlying pathophysiological mechanism for persisting complaints. To unravel factors associated with persisting complaints, VeCosCO will compare individuals with and without persistent fatigue and cognitive complaints >3 months after infection with SARS-CoV-2. The study consists of two work packages. The first work package aims to (1) investigate the relation between persisting complaints and neuropsychological functioning; (2) determine risk factors and at-risk phenotypes for the development of persistent fatigue and cognitive complaints, including the presence of postexertional malaise and (3) describe consequences of persistent complaints on quality of life, healthcare consumption and physical functioning. The second work package aims to (1) determine the presence of neuroinflammation with [18F]DPA-714 whole-body positron emission tomography (PET) scans in patients with persisting complaints and (2) explore the relationship between (neuro)inflammation and brain structure and functioning measured with MRI. / Methods and analysis: This is a prospective case–control study in participants with and without persistent fatigue and cognitive complaints, >3 months after laboratory-confirmed SARS-CoV-2 infection. Participants will be mainly included from existing COVID-19 cohorts in the Netherlands covering the full spectrum of COVID-19 acute disease severity. Primary outcomes are neuropsychological functioning, postexertional malaise, neuroinflammation measured using [18F]DPA-714 PET, and brain functioning and structure using (f)MRI. / Ethics and dissemination: Work package 1 (NL79575.018.21) and 2 (NL77033.029.21) were approved by the medical ethical review board of the Amsterdam University Medical Centers (The Netherlands). Informed consent is required prior to participation in the study. Results of this study will be submitted for publication in peer-reviewed journals and shared with the key population

    Control of Cell Migration and Inflammatory Mediators Production by CORM-2 in Osteoarthritic Synoviocytes

    Get PDF
    BackgroundOsteoarthritis (OA) is the most widespread degenerative joint disease. Inflamed synovial cells contribute to the release of inflammatory and catabolic mediators during OA leading to destruction of articular tissues. We have shown previously that CO-releasing molecules exert anti-inflammatory effects in animal models and OA chondrocytes. We have studied the ability of CORM-2 to modify the migration of human OA synoviocytes and the production of chemokines and other mediators sustaining inflammatory and catabolic processes in the OA joint.Methodology/Principal FindingsOA synoviocytes were stimulated with interleukin(IL)-1β in the absence or presence of CORM-2. Migration assay was performed using transwell chambers. Gene expression was analyzed by quantitative PCR and protein expression by Western Blot and ELISA. CORM-2 reduced the proliferation and migration of OA synoviocytes, the expression of IL-8, CCL2, CCL20, matrix metalloproteinase(MMP)-1 and MMP-3, and the production of oxidative stress. We found that CORM-2 reduced the phosphorylation of extracellular signal-regulated kinase1/2, c-Jun N-terminal kinase1/2 and to a lesser extent p38. Our results also showed that CORM-2 significantly decreased the activation of nuclear factor-κB and activator protein-1 regulating the transcription of chemokines and MMPs in OA synoviocytes.Conclusion/SignificanceA number of synoviocyte functions relevant in OA synovitis and articular degradation can be down-regulated by CORM-2. These results support the interest of this class of agents for the development of novel therapeutic strategies in inflammatory and degenerative conditions

    Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis

    Get PDF
    Introduction: Rheumatoid arthritis (RA) is a T-cell-mediated systemic autoimmune disease, characterized by synovium inflammation and articular destruction. Bone marrow mesenchymal stem cells (MSCs) could be effective in the treatment of several autoimmune diseases. However, there has been thus far no report on umbilical cord (UC)-MSCs in the treatment of RA. Here, potential immunosuppressive effects of human UC-MSCs in RA were evaluated. Methods: The effects of UC-MSCs on the responses of fibroblast-like synoviocytes (FLSs) and T cells in RA patients were explored. The possible molecular mechanism mediating this immunosuppressive effect of UC-MSCs was explored by addition of inhibitors to indoleamine 2,3-dioxygenase (IDO), Nitric oxide (NO), prostaglandin E2 (PGE2), transforming growth factor beta 1 (TGF-beta 1) and interleukin 10 (IL-10). The therapeutic effects of systemic infusion of human UC-MSCs on collagen-induced arthritis (CIA) in a mouse model were explored. Results: In vitro, UC-MSCs were capable of inhibiting proliferation of FLSs from RA patients, via IL-10, IDO and TGF-beta 1. Furthermore, the invasive behavior and IL-6 secretion of FLSs were also significantly suppressed. On the other hand, UC-MSCs induced hyporesponsiveness of T cells mediated by PGE2, TGF-beta 1 and NO and UC-MSCs could promote the expansion of CD4(+) Foxp3(+) regulatory T cells from RA patients. More importantly, systemic infusion of human UC-MSCs reduced the severity of CIA in a mouse model. Consistently, there were reduced levels of proinflammatory cytokines and chemokines (TNF-alpha, IL-6 and monocyte chemoattractant protein-1) and increased levels of the anti-inflammatory/regulatory cytokine (IL-10) in sera of UC-MSCs treated mice. Moreover, such treatment shifted Th1/Th2 type responses and induced Tregs in CIA. Conclusions: In conclusion, human UC-MSCs suppressed the various inflammatory effects of FLSs and T cells of RA in vitro, and attenuated the development of CIA in vivo, strongly suggesting that UC-MSCs might be a therapeutic strategy in RA. In addition, the immunosuppressive activitiy of UC-MSCs could be prolonged by the participation of Tregs.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000287517000020&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701RheumatologySCI(E)PubMed64ARTICLE6R2101

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions
    corecore