714 research outputs found

    Can the frequency-dependent specific heat be measured by thermal effusion methods?

    Full text link
    It has recently been shown that plane-plate heat effusion methods devised for wide-frequency specific-heat spectroscopy do not give the isobaric specific heat, but rather the so-called longitudinal specific heat. Here it is shown that heat effusion in a spherical symmetric geometry also involves the longitudinal specific heat.Comment: Paper presented at the Fifth International Workshop on Complex Systems (Sendai, September, 2007), to appear in AIP Conference Proceeding

    Fluctuation effects in the theory of microphase separation of diblock copolymers in the presence of an electric field

    Full text link
    We generalize the Fredrickson-Helfand theory of the microphase separation in symmetric diblock copolymer melts by taking into account the influence of a time-independent homogeneous electric field on the composition fluctuations within the self-consistent Hartree approximation. We predict that electric fields suppress composition fluctuations, and consequently weaken the first-order transition. In the presence of an electric field the critical temperature of the order-disorder transition is shifted towards its mean-field value. The collective structure factor in the disordered phase becomes anisotropic in the presence of the electric field. Fluctuational modulations of the order parameter along the field direction are strongest suppressed. The latter is in accordance with the parallel orientation of the lamellae in the ordered state.Comment: 16 page

    Zone Diagrams in Euclidean Spaces and in Other Normed Spaces

    Full text link
    Zone diagram is a variation on the classical concept of a Voronoi diagram. Given n sites in a metric space that compete for territory, the zone diagram is an equilibrium state in the competition. Formally it is defined as a fixed point of a certain "dominance" map. Asano, Matousek, and Tokuyama proved the existence and uniqueness of a zone diagram for point sites in Euclidean plane, and Reem and Reich showed existence for two arbitrary sites in an arbitrary metric space. We establish existence and uniqueness for n disjoint compact sites in a Euclidean space of arbitrary (finite) dimension, and more generally, in a finite-dimensional normed space with a smooth and rotund norm. The proof is considerably simpler than that of Asano et al. We also provide an example of non-uniqueness for a norm that is rotund but not smooth. Finally, we prove existence and uniqueness for two point sites in the plane with a smooth (but not necessarily rotund) norm.Comment: Title page + 16 pages, 20 figure

    Aspects of the dynamics of colloidal suspensions: Further results of the mode-coupling theory of structural relaxation

    Full text link
    Results of the idealized mode-coupling theory for the structural relaxation in suspensions of hard-sphere colloidal particles are presented and discussed with regard to recent light scattering experiments. The structural relaxation becomes non-diffusive for long times, contrary to the expectation based on the de Gennes narrowing concept. A semi-quantitative connection of the wave vector dependences of the relaxation times and amplitudes of the final α\alpha-relaxation explains the approximate scaling observed by Segr{\`e} and Pusey [Phys. Rev. Lett. {\bf 77}, 771 (1996)]. Asymptotic expansions lead to a qualitative understanding of density dependences in generalized Stokes-Einstein relations. This relation is also generalized to non-zero frequencies thereby yielding support for a reasoning by Mason and Weitz [Phys. Rev. Lett {\bf 74}, 1250 (1995)]. The dynamics transient to the structural relaxation is discussed with models incorporating short-time diffusion and hydrodynamic interactions for short times.Comment: 11 pages, 9 figures; to be published in Phys. Rev.

    Langevin Equation for the Rayleigh model with finite-ranged interactions

    Full text link
    Both linear and nonlinear Langevin equations are derived directly from the Liouville equation for an exactly solvable model consisting of a Brownian particle of mass MM interacting with ideal gas molecules of mass mm via a quadratic repulsive potential. Explicit microscopic expressions for all kinetic coefficients appearing in these equations are presented. It is shown that the range of applicability of the Langevin equation, as well as statistical properties of random force, may depend not only on the mass ratio m/Mm/M but also by the parameter Nm/MNm/M, involving the average number NN of molecules in the interaction zone around the particle. For the case of a short-ranged potential, when N≪1N\ll 1, analysis of the Langevin equations yields previously obtained results for a hard-wall potential in which only binary collisions are considered. For the finite-ranged potential, when multiple collisions are important (N≫1N\gg 1), the model describes nontrivial dynamics on time scales that are on the order of the collision time, a regime that is usually beyond the scope of more phenomenological models.Comment: 21 pages, 1 figure. To appear in Phys. Rev.

    Schur Polynomials and the Yang-Baxter equation

    Get PDF
    We show that within the six-vertex model there is a parametrized Yang-Baxter equation with nonabelian parameter group GL(2)xGL(1) at the center of the disordered regime. As an application we rederive deformations of the Weyl character formule of Tokuyama and of Hamel and King.Comment: Revised introduction; slightly changed reference

    Diffusive Evolution of Stable and Metastable Phases II: Theory of Non-Equilibrium Behaviour in Colloid-Polymer Mixtures

    Full text link
    By analytically solving some simple models of phase-ordering kinetics, we suggest a mechanism for the onset of non-equilibrium behaviour in colloid-polymer mixtures. These mixtures can function as models of atomic systems; their physics therefore impinges on many areas of thermodynamics and phase-ordering. An exact solution is found for the motion of a single, planar interface separating a growing phase of uniform high density from a supersaturated low density phase, whose diffusive depletion drives the interfacial motion. In addition, an approximate solution is found for the one-dimensional evolution of two interfaces, separated by a slab of a metastable phase at intermediate density. The theory predicts a critical supersaturation of the low-density phase, above which the two interfaces become unbound and the metastable phase grows ad infinitum. The growth of the stable phase is suppressed in this regime.Comment: 27 pages, Latex, eps

    Renormalization Theory of Stochastic Growth

    Full text link
    An analytical renormalization group treatment is presented of a model which, for one value of parameters, is equivalent to diffusion limited aggregation. The fractal dimension of DLA is computed to be 2-1/2+1/5=1.7. Higher multifractal exponents are also calculated and found in agreement with numerical results. It may be possible to use this technique to describe the dielectric breakdown model as well, which is given by different parameter values.Comment: 39 pages, LaTeX, 11 figure

    Efficiently Correcting Matrix Products

    Get PDF
    We study the problem of efficiently correcting an erroneous product of two nĂ—nn\times n matrices over a ring. Among other things, we provide a randomized algorithm for correcting a matrix product with at most kk erroneous entries running in O~(n2+kn)\tilde{O}(n^2+kn) time and a deterministic O~(kn2)\tilde{O}(kn^2)-time algorithm for this problem (where the notation O~\tilde{O} suppresses polylogarithmic terms in nn and kk).Comment: Fixed invalid reference to figure in v
    • …
    corecore