2,676 research outputs found

    The abundances of ethane to acetylene in the atmospheres of Jupiter and Saturn

    Get PDF
    The present determination of the stratospheric abundances of ethane and acetylene on Jupiter and Saturn on the basis of IR spectra near 780/cm uses atmospheric models whose thermal and density profiles have constant mixing ratios. The ratio of ethane to acetylene is noted to be insensitive to model atmosphere assumptions; it is 55 + or - 31 for Jupiter and 23 + or - 12 where model mixing ratios are uniform. Atmospheric model density profiles adapted from theoretical photochemical models are noted to also yield a higher ethane/acetylene ratios for Jupiter

    A search for varying fundamental constants using Hz-level frequency measurements of cold CH molecules

    Get PDF
    Many modern theories predict that the fundamental constants depend on time, position, or the local density of matter. We develop a spectroscopic method for pulsed beams of cold molecules, and use it to measure the frequencies of microwave transitions in CH with accuracy down to 3 Hz. By comparing these frequencies with those measured from sources of CH in the Milky Way, we test the hypothesis that fundamental constants may differ between the high and low density environments of the Earth and the interstellar medium. For the fine structure constant we find \Delta\alpha/\alpha = (0.3 +/- 1.1)*10^{-7}, the strongest limit to date on such a variation of \alpha. For the electron-to-proton mass ratio we find \Delta\mu/\mu = (-0.7 +/- 2.2) * 10^{-7}. We suggest how dedicated astrophysical measurements can improve these constraints further and can also constrain temporal variation of the constants.Comment: 8 pages, 3 figure

    A strong 3.4 micron emission feature in comet Austin 1989c1

    Get PDF
    High resolution 2.8-4.0 micron spectra of the 'new' comet Austin 1989c1, taken on 15-16 May 1990 confirm the presence of the broad emission features around 3.4 and 3.52 micron seen in a number of bright comets and ascribed to organic material. Both the 3.4 micron band strength and the 3.52/3.36 micron flux ratios are among the largest so far observed. The data are consistent with the relationship between band strength and water production rate that was recently derived. Excess emission at 3.28 and 3.6 micron cannot be unambiguously identified as features due to the poor signal-to-noise ratio

    Nonadiabatic transitions in a Stark decelerator

    Full text link
    In a Stark decelerator, polar molecules are slowed down and focussed by an inhomogeneous electric field which switches between two configurations. For the decelerator to work, it is essential that the molecules follow the changing electric field adiabatically. When the decelerator switches from one configuration to the other, the electric field changes in magnitude and direction, and this can cause molecules to change state. In places where the field is weak, the rotation of the electric field vector during the switch may be too rapid for the molecules to maintain their orientation relative to the field. Molecules that are at these places when the field switches may be lost from the decelerator as they are transferred into states that are not focussed. We calculate the probability of nonadiabatic transitions as a function of position in the periodic decelerator structure and find that for the decelerated group of molecules the loss is typically small, while for the un-decelerated group of molecules the loss can be very high. This loss can be eliminated using a bias field to ensure that the electric field magnitude is always large enough. We demonstrate our findings by comparing the results of experiments and simulations for the Stark deceleration of LiH and CaF molecules. We present a simple method for calculating the transition probabilities which can easily be applied to other molecules of interest.Comment: 12 pages, 9 figures, minor revisions following referee suggestion

    Stark deceleration of lithium hydride molecules

    Full text link
    We describe the production of cold, slow-moving LiH molecules. The molecules are produced in the ground state using laser ablation and supersonic expansion, and 68% of the population is transferred to the rotationally excited state using narrowband radiation at the rotational frequency of 444GHz. The molecules are then decelerated from 420m/s to 53m/s using a 100 stage Stark decelerator. We demonstrate and compare two different deceleration modes, one where every stage is used for deceleration, and another where every third stage decelerates and the intervening stages are used to focus the molecules more effectively. We compare our experimental data to the results of simulations and find good agreement. These simulations include the velocity dependence of the detection efficiency and the probability of transitions between the weak-field seeking and strong-field seeking quantum states. Together, the experimental and simulated data provide information about the spatial extent of the source of molecules. We consider the prospects for future trapping and sympathetic cooling experiments.Comment: 14 pages, 6 figures; minor revisions following referee suggestion

    Microwave spectroscopy of Lambda-doublet transitions in the ground state of CH

    Get PDF
    The Lambda-doublet transitions in CH at 3.3 and 0.7 GHz are unusually sensitive to variations in the fine-structure constant and the electron-to-proton mass ratio. We describe methods used to measure the frequencies of these transitions with Hz-level accuracy. We produce a pulsed supersonic beam of cold CH by photodissociation of CHBr3, and we measure the microwave transition frequencies as the molecules propagate through a parallel-plate transmission line resonator. We use the molecules to map out the amplitude and phase of the standing wave field inside the transmission line. We investigate velocity-dependent frequency shifts, showing that they can be strongly suppressed through careful timing of the microwave pulses. We measure the Zeeman and Stark effects of the microwave transitions, and reduce systematic shifts due to magnetic and electric fields to below 1 Hz. We also investigate other sources of systematic uncertainty in the experiment.Comment: 27 pages, 12 figure
    corecore