362 research outputs found

    BE Ursae Majoris: A detached binary with a unique reprocessing spectrum

    Get PDF
    New infrared photometry, optical and UV spectrophotometry, and a photographic ephemeris are presented for the detached binary BE UMa. Results show the primary to be a DO white dwarf with an effective temperature of 80,000 + or - 15,000 K and a mass of 0.6 + or - 0.1 solar masses. No evidence is found for variability of the primary. The main sequence secondary star is shown to be of early M spectral type, with a formal range of M1 to M5 being possible. A reflection effect in reprocessed line and continuum radiation is produced by EUV radiation from the primary incident on the secondary atmosphere. It is suggested that the temperature of the reprocessed component of the secondary's atmosphere is in the 5000 to 8500 K range, and that emission lines of decreasing ionization form deeper in the irradiated envelope. Relatively narrow He II and high excitation metal lines are formed from recombination and continuum fluorescence processes

    Curriculum Data Deep Dive: Identifying Data Literacies in the Disciplines

    Get PDF
    Objective: Evaluate and examine Data Literacy (DL) in the supported disciplines of four liaison librarians at a large research university. Methods: Using a framework developed by Prado and Marzal (2013), the study analyzed 378 syllabi from a two-year period across six departments—Criminal Justice, Geography, Geology, Journalism, Political Science, and Sociology—to see which classes included DLs. Results: The study was able to determine which classes hit on specific DLs and where those classes might need more support in other DLs. The most common DLs being taught in courses are Reading, Interpreting, and Evaluating Data, and Using Data. The least commonly taught are Understanding Data and Managing Data skills. Conclusions: While all disciplines touched on data in some way, there is clear room for librarians to support DLs in the areas of Understanding Data and Managing Data

    A search for the Perseus flasher and the limits on optical burst rates

    Get PDF
    We conducted a study of the error box of the possible optical burster, reported by Katz et al. (1986). This “Perseus Flasher” was subsequently identified with satellite glints by Maley (1987), a conclusion with which we fully concur. Our study, completed before Maley’s report, involved a search for highly-variable objects on archival and newly-taken plates, with a total integration time of about 260 hours, a proper-motion survey of the area, deep optical imaging with a CCD, and a single-dish radio monitoring. We found no optical or radio bursts or any other unusual objects in this area. Our upper limit to the optical flash rate from the error box of the flash photographed by Katz et al. is at least 20 times lower than the flash rate reported by those authors. Similar negative results were achieved independently by other groups; like them, we conclude that the photographed flash was most likely caused by an Earth-orbiting artifact and that most of the remaining, visually-detected flashes were spurious. From our data, we derive limits on the optical flash rates from astrophysically-interesting sources

    A Unique Concept for Liquid Level and Void Fraction Detection in Severe Fuel Damage Tests

    Full text link
    This report describes a direct-contacting liquid level and void fraction detection system that is being developed by Pacific Northwest Laboratory. The measurement technique could be used in the severe fuel damage tests that will be conducted at the Power Burst Facility, Idaho Falls, Idaho, and at the ESSOR reactor, Ispra, Italy. The detection system could also be retrofitted for commercial operating reactors to provide definitive thermal-hydraulic information. The technique can provide unambiguous, real-time data on liquid level and void fraction during normal reactor operation as well as during shutdown and accident conditions

    A Machine Learning Method to Infer Fundamental Stellar Parameters from Photometric Light Curves

    Get PDF
    A fundamental challenge for wide-field imaging surveys is obtaining follow-up spectroscopic observations: there are > 10910^9 photometrically cataloged sources, yet modern spectroscopic surveys are limited to ~few x 10610^6 targets. As we approach the Large Synoptic Survey Telescope (LSST) era, new algorithmic solutions are required to cope with the data deluge. Here we report the development of a machine-learning framework capable of inferring fundamental stellar parameters (Teff, log g, and [Fe/H]) using photometric-brightness variations and color alone. A training set is constructed from a systematic spectroscopic survey of variables with Hectospec/MMT. In sum, the training set includes ~9000 spectra, for which stellar parameters are measured using the SEGUE Stellar Parameters Pipeline (SSPP). We employed the random forest algorithm to perform a non-parametric regression that predicts Teff, log g, and [Fe/H] from photometric time-domain observations. Our final, optimized model produces a cross-validated root-mean-square error (RMSE) of 165 K, 0.39 dex, and 0.33 dex for Teff, log g, and [Fe/H], respectively. Examining the subset of sources for which the SSPP measurements are most reliable, the RMSE reduces to 125 K, 0.37 dex, and 0.27 dex, respectively, comparable to what is achievable via low-resolution spectroscopy. For variable stars this represents a ~12-20% improvement in RMSE relative to models trained with single-epoch photometric colors. As an application of our method, we estimate stellar parameters for ~54,000 known variables. We argue that this method may convert photometric time-domain surveys into pseudo-spectrographic engines, enabling the construction of extremely detailed maps of the Milky Way, its structure, and history

    Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XV. Long-Term Optical Monitoring of NGC 5548

    Get PDF
    We present the results of three years of ground-based observations of the Seyfert 1 galaxy NGC 5548, which combined with previously reported data, yield optical continuum and broad-line H-beta light curves for a total of eight years. The light curves consist of over 800 points, with a typical spacing of a few days between observations. During this eight-year period, the nuclear continuum has varied by more than a factor of seven, and the H-beta emission line has varied by a factor of nearly six. The H-beta emission line responds to continuum variations with a time delay or lag of 10-20 days, the precise value varying somewhat from year to year. We find some indications that the lag varies with continuum flux in the sense that the lag is larger when the source is brighter.Comment: 29 pages, 6 figures. Accepted for publication in ApJ (1999 Jan 10

    Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XVI. A Thirteen-Year Study of Spectral Variability in NGC 5548

    Get PDF
    We present the final installment of an intensive 13-year study of variations of the optical continuum and broad H-beta emission line in the Seyfert 1 galaxy NGC 5548. The data base consists of 1530 optical continuum measurements and 1248 H-beta measurements. The H-beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction that the size of the broad-line region is proportional to the square root of the ionizing luminosity. Moreover, the apparently linear nature of the correlation between the H-beta response time and the nonstellar optical continuum arises as a consequence of the changing shape of the continuum as it varies, specifically with the optical (5100 A) continuum luminosity proportional to the ultraviolet (1350 A) continuum luminosity to the 0.56 power.Comment: 20 pages plus 4 figures. Accepted for publication in The Astrophysical Journa

    Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Get PDF
    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage

    The Updated Zwicky Catalog (UZC)

    Get PDF
    The Zwicky Catalog of galaxies (ZC), with m_Zw<=15.5mag, has been the basis for the Center for Astrophysics (CfA) redshift surveys. To date, analyses of the ZC and redshift surveys based on it have relied on heterogeneous sets of galaxy coordinates and redshifts. Here we correct some of the inadequacies of previous catalogs by providing: (1) coordinates with <~2 arcsec errors for all of the Nuzc catalog galaxies, (2) homogeneously estimated redshifts for the majority (98%) of the data taken at the CfA (14,632 spectra), and (3) an estimate of the remaining "blunder" rate for both the CfA redshifts and for those compiled from the literature. For the reanalyzed CfA data we include a calibrated, uniformly determined error and an indication of the presence of emission lines in each spectrum. We provide redshifts for 7,257 galaxies in the CfA2 redshift survey not previously published; for another 5,625 CfA redshifts we list the remeasured or uniformly re-reduced value. Among our new measurements, Nmul are members of UZC "multiplets" associated with the original Zwicky catalog position in the coordinate range where the catalog is 98% complete. These multiplets provide new candidates for examination of tidal interactions among galaxies. All of the new redshifts correspond to UZC galaxies with properties recorded in the CfA redshift compilation known as ZCAT. About 1,000 of our new measurements were motivated either by inadequate signal-to-noise in the original spectrum or by an ambiguous identification of the galaxy associated with a ZCAT redshift. The redshift catalog we include here is ~96% complete to m_Zw<=15.5, and ~98% complete (12,925 galaxies out of a total of 13,150) for the RA(1950) ranges [20h--4h] and [8h--17h] and DEC(1950) range [-2.5d--50d]. (abridged)Comment: 34 pp, 7 figs, PASP 1999, 111, 43
    • 

    corecore