5,423 research outputs found

    Exact solutions in Einstein-Yang-Mills-Dirac systems

    Get PDF
    We present exact solutions in Einstein-Yang-Mills-Dirac theories with gauge groups SU(2) and SU(4) in Robertson-Walker space-time R×S3R \times S^3 , which are symmetric under the action of the group SO(4) of spatial rotations. Our approach is based on the dimensional reduction method for gauge and gravitational fields and relates symmetric solutions in EYMD theory to certain solutions of an effective dynamical system. We interpret our solutions as cosmological solutions with an oscillating Yang-Mills field passing between topologically distinct vacua. The explicit form of the solution for spinor field shows that its energy changes the sign during the evolution of the Yang-Mills field from one vacuum to the other, which can be considered as production or annihilation of fermions. Among the obtained solutions there is also a static sphaleron-like solution, which is a cosmological analogue of the first Bartnik-McKinnon solution in the presence of fermions.Comment: 18 pages, LaTeX 2

    New Anisotropic Behavior of Quantum Hall Resistance in (110) GaAs Heterostructures at mK Temperatures and Fractional Filling Factors

    Full text link
    Transport experiments in high mobility (110) GaAs heterostructures have been performed at very low temperatures 8 mK. At higher Landau-Levels we observe a transport anisotropy that bears some similarity with what is already seen at half-odd-integer filling on (001) oriented substrates. In addition we report the first observation of transport anisotropies within the lowest Landau-Level. This remarkable new anisotropy is independent of the current direction and depends on the polarity of the magnetic field.Comment: 3 Pages, 4 figures, Latex, uses elsart.cls and physart.cls, to be published in Physica E Added reference, made contact configuration more clea

    Unconventional MBE Strategies from Computer Simulations for Optimized Growth Conditions

    Full text link
    We investigate the influence of step edge diffusion (SED) and desorption on Molecular Beam Epitaxy (MBE) using kinetic Monte-Carlo simulations of the solid-on-solid (SOS) model. Based on these investigations we propose two strategies to optimize MBE growth. The strategies are applicable in different growth regimes: During layer-by-layer growth one can exploit the presence of desorption in order to achieve smooth surfaces. By additional short high flux pulses of particles one can increase the growth rate and assist layer-by-layer growth. If, however, mounds are formed (non-layer-by-layer growth) the SED can be used to control size and shape of the three-dimensional structures. By controlled reduction of the flux with time we achieve a fast coarsening together with smooth step edges.Comment: 19 pages, 7 figures, submitted to Phys. Rev.

    On the Phase Shift of Reflection High Energy Electron Diffraction Intensity Oscillations during Ge(001) Homoepitaxy by Molecular Beam Epitaxy

    Get PDF
    We have conducted a systematic investigation of the phase shift of the Reflection High Energy Electron Diffraction (RHEED) intensity oscillations during homoepitaxy of Ge(001) by molecular beam epitaxy for a wide range of diffraction conditions. Our results show that for small incidence angles with a beam azimuth several degrees away from the crystallographic symmetry direction, the phase is independent of incidence angle; however, it starts to shift once the incidence angle is high enough that the (004) Kikuchi line appears in the RHEED pattern. Moreover, under some conditions we observe the oscillations from only the Kikuchi feature and not from the specular spot, and the oscillatory behavior of the Kikuchi feature is almost out of phase with that of the specular spot. We conclude that the phase shift is caused by the overlap of the specular spot and the Kikuchi features, in contrast to models involving dynamical scattering theory for the phase shift. We discuss necessary conditions for avoiding interference.Engineering and Applied Science

    Insulin-Like Growth Factor I Does Not Drive New Bone Formation in Experimental Arthritis

    Get PDF
    Insulin like growth factor (IGF)-I can act on a variety of cells involved in cartilage and bone repair, yet IGF-I has not been studied extensively in the context of inflammatory arthritis. The objective of this study was to investigate whether IGF-I overexpression in the osteoblast lineage could lead to increased reparative or pathological bone formation in rheumatoid arthritis and/or spondyloarthritis respectively.status: publishe
    corecore