53 research outputs found

    Seismicity controlled by resistivity structure : the 2016 Kumamoto earthquakes, Kyushu Island, Japan

    Get PDF
    The M JMA 7.3 Kumamoto earthquake that occurred at 1:25 JST on April 16, 2016, not only triggered aftershocks in the vicinity of the epicenter, but also triggered earthquakes that were 50–100 km away from the epicenter of the main shock. The active seismicity can be divided into three regions: (1) the vicinity of the main faults, (2) the northern region of Aso volcano (50 km northeast of the mainshock epicenter), and (3) the regions around three volcanoes, Yufu, Tsurumi, and Garan (100 km northeast of the mainshock epicenter). Notably, the zones between these regions are distinctively seismically inactive. The electric resistivity structure estimated from one-dimensional analysis of the 247 broadband (0.005–3000 s) magnetotelluric and telluric observation sites clearly shows that the earthquakes occurred in resistive regions adjacent to conductive zones or resistive-conductive transition zones. In contrast, seismicity is quite low in electrically conductive zones, which are interpreted as regions of connected fluids. We suggest that the series of the earthquakes was induced by a local accumulated stress and/or fluid supply from conductive zones. Because the relationship between the earthquakes and the resistivity structure is consistent with previous studies, seismic hazard assessment generally can be improved by taking into account the resistivity structure. Following on from the 2016 Kumamoto earthquake series, we suggest that there are two zones that have a relatively high potential of earthquake generation along the western extension of the MTL

    Status of adult outpatients with congenital heart disease in Japan: The Japanese Network of Cardiovascular Departments for Adult Congenital Heart Disease Registry

    Get PDF
    BackgroundThe Japanese Network of Cardiovascular Departments for Adult Congenital Heart Disease (JNCVD-ACHD) was founded in 2011 for the lifelong care of adult patients with congenital heart disease (ACHD patients). This network maintains the first Japanese ACHD registry.Methods and resultsFrom 2011 to 2019, the JNCVD-ACHD registered 54 institutions providing specialized care for ACHD patients in 32 of the 47 prefectures in Japan. The registry collected data on the disease profile for 24,048 patients from 50 institutions and the patient characteristics for 9743 patients from 24 institutions. The most common ACHDs were atrial septal defect (20.5 %), ventricular septal defect (20.5 %), tetralogy of Fallot (12.9 %), and univentricular heart (UVH)/single ventricle (SV; 6.6 %). ACHD patients without biventricular repair accounted for 37.0 % of the population. Also examined were the serious anatomical and/or pathophysiological disorders such as pulmonary arterial hypertension (3.0 %) including Eisenmenger syndrome (1.2 %), systemic right ventricle under biventricular circulation (sRV-2VC; 2.8 %), and Fontan physiology (6.0 %). The sRV-2VC cases comprised congenitally corrected transposition of the great arteries without anatomical repair (61.9 %) and transposition of the great arteries with atrial switching surgery (38.1 %). The primary etiology (86.4 %) for Fontan physiology was UVH/SV. In addition, developmental/chromosomal/genetic disorders were heterotaxy syndromes (asplenia, 0.9 %; polysplenia, 0.7 %), trisomy 21 (4.0 %), 22q11.2 deletion (0.9 %), Turner syndrome (0.2 %), and Marfan syndrome (1.1 %).ConclusionsAlthough the specific management of ACHD has systematically progressed in Japan, this approach is still evolving. For ideal ACHD care, the prospective goals for the JNCVD-ACHD are to create local networks and provide a resource for multicenter clinical trials to support evidence-based practice

    A new dynamic myocardial phantom for the assessment of left ventricular function by gated single-photon emission tomography.

    Get PDF
    Gated myocardial perfusion single-photon emission tomography (SPET) has been used for the measurement of left ventricular (LV) function and validated by means of comparison with other imaging modalities. We have designed a new dynamic myocardial phantom in order to validate the LV function as assessed by the use of gated myocardial perfusion SPET. The phantom consists of two half-ellipsoids (an endocardial surface and an epicardial surface) and a thorax. The myocardial space is filled with a radioactive solution. The endocardial surface moves continuously towards and away from the epicardial surface in the longitudinal axis to vary the LV volume [143 ml at end-diastole (ED), 107 ml at end-systole (ES)] and thickness (apex 8 mm at ED and 26 mm at ES, midplane 8 mm). The mean values of wall motion (WM) for the apical midplane region and the basal midplane region were 5 mm and 2 mm, respectively. Gated myocardial SPET was performed during 8 and 16 intervals. These projection data sets were processed using a Butterworth filter with an order of 5 and a critical frequency of 0.34 cycles/cm. LV function was calculated using the quantitative gated SPET (QGS) algorithm. The LV function values estimated by gated SPET during 16 intervals [22% for ejection fraction (EF), 3.7 mm for WM of the apical midplane, 1.7 mm for WM of the basal midplane] closely resembled actual LV functions [25% for EF, 5 mm for WM of the apical midplane, 2 mm for WM of the basal midplane]. However, the estimated values during 8 intervals were smaller than those during 16 intervals (19% for EF, 3.3 mm for WM of the apical-midplane, 1.1 mm for WM of the basal-midplane). The estimated LV volumes closely correlated with the actual volumes (r=0.99 for 16 intervals, r=0.95 for 8 intervals). Utilizing this phantom, LV function estimated using gated myocardial SPET can be compared with actual values
    corecore