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Abstract. Gated myocardial perfusion single-photon emission tomography 

(SPET) has been used for the measurement of left ventricular (LV) function 

and validated by means of comparison with other imaging modalities. We 

have designed a new dynamic myocardial phantom in order to validate the 

LV function as assessed by the use of gated myocardial perfusion SPET. The 

phantom consists of two half-ellipsoids (an endocardial surface and an 

epicardial surface) and a thorax. The myocardial space is filled with a 

radioactive solution. The endocardial surface moves continuously towards 

and away from the epicardial surface in the longitudinal axis to vary the LV 

volume [143 ml at end-diastole (ED), 107 ml at end-systole (ES)] and 

thickness (apex 8 mm at ED and 26 mm at ES, midplane 8 mm). The mean 

values of wall motion (WM) for the apical midplane region and the basal 

midplane region were 5 mm and 2 mm, respectively. Gated myocardial SPET 

was performed during 8 and 16 intervals. These projection data sets were 

processed using a Butterworth filter with an order of 5 and a critical 

frequency of 0.34 cycles/cm. LV function was calculated using the 

quantitative gated SPET (QGS) algorithm. The LV function values 

estimated by gated SPET during 16 intervals [22% for ejection fraction (EF), 

3.7 mm for WM of the apical midplane, 1.7 mm for WM of the basal 

midplane] closely resembled actual LV functions [25% for EF, 5 mm for WM 

of the apical midplane, 2 mm for WM of the basal midplane]. However, the 

estimated values during 8 intervals were smaller than those during 16 

intervals (19% for EF, 3.3 mm for WM of the apical-midplane, 1.1 mm for 

WM of the basal-midplane). The estimated LV volumes closely correlated 
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with the actual volumes (r = 0.99 for 16 intervals, r = 0.95 for 8 intervals). 

Utilizing this phantom, LV function estimated using gated myocardial SPET 

can be compared with actual values. 

Key words. Myocardium - Phantom - Wall motion - Single-photon emission 

tomography 
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Introduction 

The assessment of left ventricular (LV) volumes and LV function is of importance for 

both diagnosis and prognosis [1, 2, 3, 4, 5]. Gated myocardial perfusion single-photon 

emission tomography (SPET) has been used to assess LV function and volumes [6, 7, 8, 9, 

10, 11, 12, 13, 14] and allows for simultaneous determination of both myocardial 

perfusion and function in a single study. The accuracy of LV functional measurement 

has been validated by means of comparison with other imaging modalities [15, 16, 17, 

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. 

We have developed a new moving myocardial phantom to validate the values calculated 

by the use of gated SPET. This myocardial phantom consists of a fixed epicardial surface 

and an endocardial surface which continuously moves towards and away from the 

epicardial surface to change the LV volume. 

In this study we assessed the LV functional parameters estimated from gated SPET 

with this dynamic myocardial phantom. 

 

Materials and methods 

Phantom design. The phantom consists of two half-ellipsoids and a thorax. The 

half-ellipsoids are modelled as an endocardial surface and an epicardial surface. The 

ellipsoid representing the epicardial surface has a half major axis of 92 mm and a minor 

axis of 64 mm. The ellipsoid representing the endocardial surface has a half major axis 

of 81 mm and a minor axis of 48 mm (Fig. 1). Supply tubes containing radioactive 

solution were connected to the basal anterior epicardial surface.  

The thorax phantom is constructed to represent the lungs, a mediastinum and spine 

[29]. The sections representing the lungs contain beads of foaming polystyrene and 
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water, and have a density of 0.28 g/cm3. The mediastinal section contains water 

(density 1.0 g/cm3). The spinal section is constructed of a material having a density of 

1.27 g/cm3 (Fig. 2). 

The myocardial phantom is located in the mediastinum. The myocardial longitudinal 

axis is bent backward at 24° and rightward at 40° with the thorax axial (Figs. 2, 3). 

The endocardial surface moves continuously towards and away from the epicardial 

surface along the longitudinal axis. The stroke length is 18 mm (Figs. 1, 4). 

Consequently, the LV volume changes from 107 ml (ES) to 143 ml (ED) and the 

thickness also changes (apex 8 mm at ED and 26 mm at ES). This phantom has a 

trigger generator which outputs 2-mV pulse in the ED phase. 

SPET acquisition. The myocardial space of the phantom was filled with 143 kBq/ml of 

technetium-99m solution. SPET was acquired on a dual-detector camera (Vertex, ADAC 

Laboratories) with the detectors oriented at 90°. The camera was equipped with 

low-energy (VXGP) collimators, with the photopeak centered at 140 keV and a ±10% 

window. Step-and-shoot detector rotation was employed, with 32 projections over 180° 

(RAO 45° to LPO 45°, non-circular orbit for the nearest-neighbour distances) and 15 s of 

data collection per projection, distributed over 16 cardiac frames. In this phantom study, 

the cardiac cycle was 40 cycles/min. Data were acquired in a 64×64 matrix. The 16 

intervals at each projection angle were compacted into 8. 

Data processing. The 8- and 16-interval projection data were processed using a 

Butterworth filter with an order of 5 and a critical frequency of 0.38 cycles/cm. The 

ramp filter was used for reconstruction with filtered backprojection. Scatter and 

attenuation corrections were not performed. The transaxial images were reoriented into 

short-axis images. The 8- and 16-interval LV function was calculated from short-axis 
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images using the quantitative gated SPET (QGS) algorithm developed by Germano et al. 

[30, 31, 32, 33]. Estimated LV function was based on LV volumes, ejection fraction 

(EF%) and wall motion (WM). Estimated WM was calculated by using the mean values 

of the apical midplane and basal midplane regions from the QGS results. 

Actual LV volumes during each phase were calculated based on the stroke length 

during each phase. Actual WM was based on the perpendicular length between the ED 

endocardial surface and the ES endocardial surface. The mean values of WM were 5 mm 

at the apical midplane region and 2 mm at the basal midplane region (Fig. 4). 

The apical and basal regions were excluded from this study. 

 

Results 

SPET images 

The SPET images of the dynamic myocardial phantom are shown in Fig. 5. The 

phantom cavity was smaller during the ES phase than during the ED phase. 

Myocardial activity during the ES phase was greater than during the ED phase. No 

definite regional perfusion defects were seen in the SPET images. 

LV volumes and ejection fraction 

The estimated LV volumes for both 8 and 16 intervals were highly correlated with the 

actual volumes (y = 13 + 0.63x, r = 0.99, SEE = 1.3 ml with 16 intervals, y = 23 + 0.54x,  

r = 0.95, SEE = 2.4 ml with 8 intervals). 

The time-volume curves for 8 intervals and 16 intervals are shown in Fig. 6. 

The actual EF of this phantom was 25%. The estimated EF was 22% for 16 intervals 

and 19% for 8 intervals (Table 1). 

Wall motion 
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The estimated WM was also compared with the actual WM (Table 1). The 

measurements obtained in this study revealed differences in WM between the apical 

midplane and the basal midplane. The estimated WM during 8 intervals was slightly 

smaller than the estimated WM during 16 intervals in both the apical midplane and the 

basal midplane. 

 

Discussion 

Phantom design and SPET images 

The results of this study indicate that LV function can be calculated by gated SPET 

and validated using our new dynamic myocardial phantom. A feature of this phantom is 

its ability to reproduce thickening, which is an important mechanism of myocardium. 

The phantom is able to simulate wall motion of the endocardial surface and LV volumes 

can be varied. It is also to be noted that the functional parameters of the phantom are 

known, as a consequence of which it will be valid for every algorithm of LV functional 

measurements. 

This phantom reproduces attenuation and scatter. When the phantom is attached to 

diaphragmatic and breast models, phantom studies can reveal the effect of attenuation 

and scatter for LV functional measurements. Furthermore, if a spacer is inserted into a 

space between the epicardial and endocardial surface, a study resembling a myocardial 

defect can be performed. 

This phantom approximates the actual anatomical location of the myocardium, as well 

as myocardial size and shape. Accordingly, SPET imaging of the phantom reproduces 

clinical studies. In addition, SPET included an obstacle causing collimator blurring 

similar to that found in a clinical study. However, estimated LV functions corresponded 
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closely with actual functions, and estimated LV volumes correlated with actual volumes. 

The reason for this is that the QGS algorithm works in three-dimensional space. A 

spatial blur on the SPET spreads in three-dimensional space. If the short-axis images 

were to be analysed in two-dimensional space, the influence of the blur on the 

longitudinal axis could not be considered. If the SPET study of the phantom were not 

processed using an algorithm capable of working in three dimensions, the estimated LV 

functions would differ from the actual values. 

LV volumes and ejection fraction 

All LV volumes were underestimated. The reason for this may have been limited 

spatial resolution. Germano et al. reported that lower critical frequency effects a 

degradation of spatial resolution which causes a reduction in estimated LV volume [30]. 

On the other hand, the regression equation obtained from this study nearly reproduces 

the LV volume of the original experiment by Germano et al. In their experiment, the 

cavity volume of the phantom was 63 ml. When the actual volume is 63 ml, the 

calculated volume will be 57 ml on the 8-interval regression equation. Thus, the 

aforementioned underestimation may be significantly reduced in the range of 50-60 ml. 

The ED volume was underestimated to a greater extent than the ES volume. The 

reason for this is as follows: Partial volume effect and spillover adversely affect the 

quantification of radioactivity concentration in small objects [34]. Hoffman et al. 

reported that image bar thickness overestimation increases with true bar thickness 

thinning [35]. The myocardial thickness during the ED phase was smaller than that 

during the ES phase. Accordingly, the error in myocardial thickness at ED was greater 

than that at ES. Overestimating the myocardial thickening caused a reduction in LV 

volumes. 
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The time-volume curves resembled a cosine wave. Since the stroke motion of this 

phantom is very simple, these curves are different from a clinical time-volume curve in 

which systolic contractions are rapid and diastolic expansion is slower [36, 37]. However, 

it was possible to detect differences in measurements between 8 and 16 intervals. 

It has been reported that compacting 16-interval data sets into 8-interval data sets is 

equivalent to smoothing the time-volume curve [30]. This finding was confirmed by the 

present study using this dynamic phantom. It was demonstrated that LV volumes 

during 16 intervals were closer to the actual volumes than those during 8 intervals. 

The EF of this phantom is lower than a normal EF. However, this phantom's EF can be 

calculated by gated SPET. 

Wall motion 

The WM of the apical region was excluded from this study because the WM of the 

apical region has a length of more than 10 mm, which is higher than the limit for QGS. 

With QGS, motion greater than 10 mm is assumed to equal 10 mm (the scale is 

"saturated" at 10 mm). Since the basal region was connected to the radioactive solution 

supply tubes, WM of the basal region was also excluded from this study. 

All estimates of WM for 8 intervals were smaller than those for 16 intervals. Because 

compacting 16-interval data sets into 8-interval data sets is equivalent to smoothing all 

images during a phase, the acquired myocardial SPET images during 8 intervals were 

more blurred than those acquired during 16 intervals, with thicker myocardium at ED. 

The estimated myocardial wall at ED was thicker. Such a blurring effect may cause 

underestimation of wall motion during 8 intervals. 

Limitations of this study 

Using the described dynamic phantom it was not possible to evaluate LV volume over a 
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wide range. However, gated SPET has been fully tested in comparison with 

echocardiography, magnetic resonance imaging, contrast ventriculography and other 

modalities. This study focussed on the extent of differences in estimated LV volume and 

regional functional parameters with the dynamic myocardial phantom, which provides 

known parameters. 

The relationship between perfusion defects and estimated functional parameters using 

a digital phantom has been investigated in detail [31]. The location and size of perfusion 

defects can be easily varied in a digital phantom simulation. On the other hand, 

experiments with respect to perfusion defects using our dynamic phantom require the 

production of a spacer for the defect, the insertion of the spacer, SPET acquisition and 

SPET processing. Nevertheless, experiments using our dynamic phantom yield results 

similar to those obtained with the digital phantom simulation. 

This dynamic phantom differs from the physiological cardiac cycle in that the entire 

radioactivity within one interval increases during the phantom's systole, whereas 

myocardial radioactivity in the physiological cardiac cycle remains constant. However, 

this may be a minor problem. In gated myocardial perfusion SPET, SPET values during 

the ES phase increase compared with those during the ED phase owing to partial 

volume effects but not to an actual increase in myocardial radioactivity. The major 

reason for the volume underestimation in our study was related to an interaction of 

spatial blur and partial volume effects. To minimise partial volume effects, a new 

technical study with a perfect acquisition with minimum pixel size, a large number of 

counts and ultra-high-resolution collimators is warranted. 

 

Conclusion 

 10



We have developed a dynamic myocardial phantom in order to validate the values 

calculated by gated SPET. Utilizing this phantom, some differences in measurements 

with different acquisition parameters were identified. Thus, use of the dynamic 

myocardial phantom validates influences associated with the acquisition parameters 

(the number of intervals), and permits comparison of LV function values estimated 

using gated myocardial SPET and actual values. 
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Fig. 1. Design of the myocardium containing the new dynamic myocardial phantom 

 

Fig. 2. Top: design and density of the thorax phantom. Bottom: the myocardium location 

in the thorax phantom 

 

Fig. 3. Anterior view of the dynamic myocardial phantom 

 

Fig. 4. The endocardial location during the end-diastolic phase and end-systolic phases. 

Apical midplane and basal midplane regions were defined as shown 

 

Fig. 5. SPET images of the dynamic myocardial phantom. the left column shows the ED 

phase. The right column shows the ES phase (top to bottom: apical, mid and basal short 

axis, horizontal long-axis and vertical long axis) 

 

Fig. 6. Time-volume curves for 16 intervals and the 8 intervals 

 

Table 1. Comparison of actual values and estimated values 
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Actual Value 16 intervals 8 intervals

EDV (ml) 143 104 101

ESV (ml) 107 81 81

EF (%) 25 22 19

WM ba-m (mm) 2 1.7 1.1

SV (ml) 36 23 20

WM ap-m (mm) 5 3.7 3.3

Table 1.

EDV, End-diastolic volume; ESV, end-systolic volume; SV, stroke volume; EF, 
ejection fraction; WM ap-m, wall motion of the apical midplane; WM ba-m, wall 
motion of the basal midplane
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