5 research outputs found

    The relation between body weight and wear in Total Hip Prosthesis: A finite element study

    Get PDF
    As the current obesity epidemic grows, an increased number of obese patients undergoing Total Hip Arthroplasty (THA) can be expected in the coming years. The National Health Service of the UK (NHS) recommends that an obese patient should undergo weight loss before THA. It is understood that an increased body weight would increase the wear rates on the prostheses, however, the extent of increased wear and the impact on the longevity of the prosthesis is unclear. The NHS found that 45% of THA failures in 2019 were caused by wear which led to a multitude of failures such as infection, aseptic loosening and dislocation such that a revision surgery is then needed. In this study, a finite element model was created to model a walking cycle and a newly developed wear algorithm was used to perform a series of computational wear analyses to investigate the effect of different patient weights on the evolution of wear in THAs up to 5 million cycles. The wear rates shown in this study are closely comparable to previous literature. The XLPE volumetric wear rates were found to be between 15 – 35mm3/yr (range: 1.5 – 57.6mm3/yr) and femoral head taper surface volumetric wear rates were between 0.174 – 0.225mm3/yr (range: 0.01 – 3.15mm3/yr). The results also showed that an increased weight of 140kg can increase the metallic wear by 26% and polyethylene wear by 30% when compared to 100kg body weight. As increased wear can lead to a multitude of failure such as aseptic loosening, dislocation and metallosis, from this study, it is recommended that obese patients undergo recommended weight loss and maintain this lesser weight to reduce wear and prolong the life of the THA

    The impact of femoral head size on the wear evolution at contacting surfaces of total hip prostheses: A finite element analysis.

    Get PDF
    Total Hip Arthroplasty has been a revolutionary technique in restoring mobility to patients with damaged hip joints. The introduction of modular components of the hip prosthesis allowed for bespoke solutions based on the requirements of the patient. The femoral stem is designed with a conical trunnion to allow for assembly of different femoral head sizes based on surgical requirements. The femoral head diameters for a metal-on-polyethylene hip prosthesis have typically ranged between 22 mm and 36 mm and are typically manufactured using Cobalt-Chromium alloy. A smaller femoral head diameter is associated with lower wear of the polyethylene, however, there is a higher risk of dislocation. In this study, a finite element model of a standard commercial hip arthroplasty prosthesis was modelled with femoral head diameters ranging from 22 mm to 36 mm to investigate the wear evolution and material loss at both contacting surfaces (acetabular cup and femoral stem trunnion). The finite element model, coupled with a validated in-house wear algorithm modelled a human walking for 10 million steps. The results have shown that as the femoral head size increased, the amount of wear on all contacting surfaces increased. As the femoral head diameter increased from 22 mm to 36 mm, the highly cross-linked polyethylene (XLPE) volumetric wear increased by 61% from 98.6 mm3 to 159.5 mm3 while the femoral head taper surface volumetric wear increased by 21% from 4.18 mm3 to 4.95 mm3. This study has provided an insight into the amount of increased wear as the femoral head size increased which can highlight the life span of these prostheses in the human body

    How does bicycling affect the longevity of Total Hip Arthroplasty? A finite element wear analysis

    Get PDF
    As the number of young and active individuals undergoing Total Hip Arthroplasty (THA) are increasing yearly, there is a need for hip prostheses to have increased longevity. Current investigations into the longevity of these prostheses only include walking as the patient's activity as there is limited data on the amount and intensity of other activity performed by the patient. To further understand the evolution of wear and increase the longevity of these implants, the impact of different activities on the hip prosthesis needs to be investigated. In this study, a finite element model and wear algorithm was developed to simulate both walking and bicycling over a 5-year period. The XLPE acetabular cup volumetric wear rate was found to be 33 mm3/yr while the femoral head taper wear rates were between 0.01 – 0.39 mm3/yr. The results showed that by adding bicycling of up to 80 km per week with normal walking activity, the XLPE mean volumetric wear rate increased by 67% and the metallic mean volumetric wear rate by 11%. However, the patient may gain further health benefits from this additional activity. Assistive electric bikes may also be used to further reduce the loads on the hip joint, allowing for lower amounts of wear
    corecore