2,355 research outputs found

    Flow in straight through labyrinth seal: a comparison of fluid structure interaction effects

    Get PDF
    A numerical study has been conducted to study the fluid structural interaction in a straight through labyrinth seal (half-model). The structural effect is identified and the fluid force is correlated with it which gives an estimate of the deformation that takes place in the seal. The distribution of the radial deformation along the seal axis for the rotational speed ranging from 6000 rpm to 15000 rpm is reported in this paper. The radial deformation which decreases the clearance between the rotating and stationary parts of sealing surface is an indication that centrifugal growth occurs. This finding is in agreement with other numerical and experimental work reported in the literature

    Angiogenically active vascular endothelial growth factor is over-expressed in malignant human and rat prostate carcinoma cells

    Get PDF
    Vascular endothelial growth factor (VEGF) is one of the most potent factors for stimulating angiogenesis, an essential process required for expansion of primary tumour and dissemination of malignant cells. To investigate the possible role of VEGF in facilitating metastasis of prostate cancer via stimulating angiogenesis, we have used Northern and slot blotting, reverse transcription polymerase chain reaction, nucleotide sequence analysis and enzyme-linked immunosorbent assay to compare the VEGF expression in series of human and rat cell lines with either benign or malignant characteristics. We have also employed the chick chorioallantoic membrane (CAM) assay to measure the angiogenic activity of the VEGF derived from both benign and malignant cells. The level of VEGF mRNA expressed in the seven malignant human and rat cell lines is 3.5- to 10-fold higher than that expressed in the benign cell lines. The three metastatic variants, generated by transfection of a benign cell line with DNA extracted from prostate carcinoma cells, expressed 2.5 to 5 times more VEGF mRNA than their parental benign cells. While VEGF 121 and 165 were predominantly expressed by both the benign and malignant cells, the transcript representing VEGF 189 isoform was only detected in the malignant cells. At protein level, three human malignant cell lines produced more VEGF (2.7–7.9 ng ml−1) than the benign cell line (1.3 ng ml−1). CAM assay detected a VEGF-dependent angiogenic activity in the medium from malignant cells, but only a relatively weak VEGF-independent activity in the medium from benign cells. These results demonstrated that malignant cells did over-express VEGF and only the VEGF derived from malignant cells was angiogenically active. Thus, we suggest that the VEGF produced by malignant cells might play an important role in facilitating metastasis of prostatic cancer. © 2000 Cancer Research Campaig

    Stabilized Kuramoto-Sivashinsky system

    Full text link
    A model consisting of a mixed Kuramoto - Sivashinsky - KdV equation, linearly coupled to an extra linear dissipative equation, is proposed. The model applies to the description of surface waves on multilayered liquid films. The extra equation makes its possible to stabilize the zero solution in the model, opening way to the existence of stable solitary pulses (SPs). Treating the dissipation and instability-generating gain in the model as small perturbations, we demonstrate that balance between them selects two steady-state solitons from their continuous family existing in the absence of the dissipation and gain. The may be stable, provided that the zero solution is stable. The prediction is completely confirmed by direct simulations. If the integration domain is not very large, some pulses are stable even when the zero background is unstable. Stable bound states of two and three pulses are found too. The work was supported, in a part, by a joint grant from the Israeli Minsitry of Science and Technology and Japan Society for Promotion of Science.Comment: A text file in the latex format and 20 eps files with figures. Physical Review E, in pres

    Stable periodic waves in coupled Kuramoto-Sivashinsky - Korteweg-de Vries equations

    Full text link
    Periodic waves are investigated in a system composed of a Kuramoto-Sivashinsky - Korteweg-de Vries (KS-KdV) equation, which is linearly coupled to an extra linear dissipative equation. The model describes, e.g., a two-layer liquid film flowing down an inclined plane. It has been recently shown that the system supports stable solitary pulses. We demonstrate that a perturbation analysis, based on the balance equation for the field momentum, predicts the existence of stable cnoidal waves (CnWs) in the same system. It is found that the mean value U of the wave field u in the main subsystem, but not the mean value of the extra field, affects the stability of the periodic waves. Three different areas can be distinguished inside the stability region in the parameter plane (L,U), where L is the wave's period. In these areas, stable are, respectively, CnWs with positive velocity, constant solutions, and CnWs with negative velocity. Multistability, i.e., the coexistence of several attractors, including the waves with several maxima per period, appears at large value of L. The analytical predictions are completely confirmed by direct simulations. Stable waves are also found numerically in the limit of vanishing dispersion, when the KS-KdV equation goes over into the KS one.Comment: a latex text file and 16 eps files with figures. Journal of the Physical Society of Japan, in pres

    Role of Interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression

    Get PDF
    Background: The use of TNF inhibitors has been a major progress in the treatment of chronic inflammation. However, not all patients respond. In addition, response will be often lost when treatment is stopped. These clinical aspects indicate that other cytokines might be involved and we focus here on the role of IL-17. In addition, the chronic nature of joint inflammation may contribute to reduced response and enhanced chronicity. Therefore we studied the capacity of IL-17 to regulate synoviolin, an E3 ubiquitin ligase implicated in synovial hyperplasia in human rheumatoid arthritis (RA) FLS and in chronic reactivated streptococcal cell wall (SCW)-induced arthritis.<p></p> Methodology/Principal Findings: Chronic reactivated SCW-induced arthritis was examined in IL-17R deficient and wild-type mice. Synoviolin expression was analysed by real-time RT-PCR, Western Blot or immunostaining in RA FLS and tissue, and p53 assessed by Western Blot. Apoptosis was detected by annexin V/propidium iodide staining, SS DNA apoptosis ELISA kit or TUNEL staining and proliferation by PCNA staining. IL-17 receptor A (IL-17RA), IL-17 receptor C (IL-17-RC) or synoviolin inhibition were achieved by small interfering RNA (siRNA) or neutralizing antibodies. IL-17 induced sustained synoviolin expression in RA FLS. Sodium nitroprusside (SNP)-induced RA FLS apoptosis was associated with reduced synoviolin expression and was rescued by IL-17 treatment with a corresponding increase in synoviolin expression. IL-17RC or IL-17RA RNA interference increased SNP-induced apoptosis, and decreased IL-17-induced synoviolin. IL-17 rescued RA FLS from apoptosis induced by synoviolin knockdown. IL-17 and TNF had additive effects on synoviolin expression and protection against apoptosis induced by synoviolin knowndown. In IL-17R deficient mice, a decrease in arthritis severity was characterized by increased synovial apoptosis, reduced proliferation and a marked reduction in synoviolin expression. A distinct absence of synoviolin expressing germinal centres in IL-17R deficient mice contrasted with synoviolin positive B cells and Th17 cells in synovial germinal centre-like structures.<p></p> Conclusion/Significance: IL-17 induction of synoviolin may contribute at least in part to RA chronicity by prolonging the survival of RA FLS and immune cells in germinal centre reactions. These results extend the role of IL-17 to synovial hyperplasia.<p></p&gt

    Studies of Phase Turbulence in the One Dimensional Complex Ginzburg-Landau Equation

    Full text link
    The phase-turbulent (PT) regime for the one dimensional complex Ginzburg-Landau equation (CGLE) is carefully studied, in the limit of large systems and long integration times, using an efficient new integration scheme. Particular attention is paid to solutions with a non-zero phase gradient. For fixed control parameters, solutions with conserved average phase gradient ν\nu exist only for ν|\nu| less than some upper limit. The transition from phase to defect-turbulence happens when this limit becomes zero. A Lyapunov analysis shows that the system becomes less and less chaotic for increasing values of the phase gradient. For high values of the phase gradient a family of non-chaotic solutions of the CGLE is found. These solutions consist of spatially periodic or aperiodic waves travelling with constant velocity. They typically have incommensurate velocities for phase and amplitude propagation, showing thereby a novel type of quasiperiodic behavior. The main features of these travelling wave solutions can be explained through a modified Kuramoto-Sivashinsky equation that rules the phase dynamics of the CGLE in the PT phase. The latter explains also the behavior of the maximal Lyapunov exponents of chaotic solutions.Comment: 16 pages, LaTeX (Version 2.09), 10 Postscript-figures included, submitted to Phys. Rev.

    RANKL-induced DC-STAMP is essential for osteoclastogenesis

    Get PDF
    Osteoclasts are bone-resorbing, multinucleated giant cells that are essential for bone remodeling and are formed through cell fusion of mononuclear precursor cells. Although receptor activator of nuclear factor– B ligand (RANKL) has been demonstrated to be an important osteoclastogenic cytokine, the cell surface molecules involved in osteoclastogenesis are mostly unknown. Here, we report that the seven-transmembrane receptor-like molecule, dendritic cell–specific transmembrane protein (DC-STAMP) is involved in osteoclastogenesis. Expression of DCSTAMP is rapidly induced in osteoclast precursor cells by RANKL and other osteoclastogenic stimulations. Targeted inhibition of DC-STAMP by small interfering RNAs and specific antibody markedly suppressed the formation of multinucleated osteoclast-like cells. Overexpression of DC-STAMP enhanced osteoclastogenesis in the presence of RANKL. Furthermore, DC-STAMP directly induced the expression of the osteoclast marker tartrate-resistant acid phosphatase. These data demonstrate for the first time that DC-STAMP has an essential role in osteoclastogenesis.Toshio Kukita, Naohisa Wada, Akiko Kukita, Takashi Kakimoto, Ferry Sandra, Kazuko Toh, Kengo Nagata, Tadahiko Iijima, Madoka Horiuchi, Hiromi Matsusaki, Kunio Hieshima, Osamu Yoshie and Hisayuki Nomiyam

    Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations

    Full text link
    A two-dimensional (2D) generalization of the stabilized Kuramoto - Sivashinsky (KS) system is presented. It is based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic (Newell -- Whitehead -- Segel, NWS) type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer's surface. Actually, the model is quite general, offering a simple way to stabilize nonlinear waves in media combining the weakly-2D dispersion of the KP type with gain and NWS dissipation. Parallel to this, another model is introduced, whose dissipative terms are isotropic, rather than of the NWS type. Both models include an additional linear equation of the advection-diffusion type, linearly coupled to the main KP-NWS equation. The extra equation provides for stability of the zero background in the system, opening a way to the existence of stable localized pulses. The consideration is focused on the case when the dispersive part of the system of the KP-I type, admitting the existence of 2D localized pulses. Treating the dissipation and gain as small perturbations and making use of the balance equation for the field momentum, we find that the equilibrium between the gain and losses may select two 2D solitons, from their continuous family existing in the conservative counterpart of the model (the latter family is found in an exact analytical form). The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely corroborate the analytical predictions.Comment: a latex text file and 16 eps files with figures; Physical Review E, in pres

    Magnetic local time dependence of geomagnetic disturbances contributing to the AU and AL indices

    Get PDF
    The Auroral Electrojet (AE) indices, which are composed of four indices (AU, AL, AE, and AO), are calculated from the geomagnetic field data obtained at 12 geomagnetic observatories that are located in geomagnetic latitude (GMLAT) of 61.7°-70°. The indices have been widely used to study magnetic activity in the auroral zone. In the present study, we examine magnetic local time (MLT) dependence of geomagnetic field variations contributing to the AU and AL indices. We use 1-min geomagnetic field data obtained in 2003. It is found that both AU and AL indices have two ranges of MLT (AU: 15:00-22:00MLT, ~06:00 MLT; and AL: ~02:00 MLT, 09:00-12:00 MLT) contributing to the index during quiet periods and one MLT range (AU: 15:00-20:00MLT, and AL: 00:00-06:00 MLT) during disturbed periods. These results are interpreted in terms of various ionospheric current systems, such as, Sqp, Sq, and DP2

    Sharper and Simpler Nonlinear Interpolants for Program Verification

    Full text link
    Interpolation of jointly infeasible predicates plays important roles in various program verification techniques such as invariant synthesis and CEGAR. Intrigued by the recent result by Dai et al.\ that combines real algebraic geometry and SDP optimization in synthesis of polynomial interpolants, the current paper contributes its enhancement that yields sharper and simpler interpolants. The enhancement is made possible by: theoretical observations in real algebraic geometry; and our continued fraction-based algorithm that rounds off (potentially erroneous) numerical solutions of SDP solvers. Experiment results support our tool's effectiveness; we also demonstrate the benefit of sharp and simple interpolants in program verification examples
    corecore