446 research outputs found

    The quantum Heisenberg antiferromagnet on the square lattice

    Full text link
    The pure-quantum self-consistent harmonic approximation, a semiclassical method based on the path-integral formulation of quantum statistical mechanics, is applied to the study of the thermodynamic behaviour of the quantum Heisenberg antiferromagnet on the square lattice (QHAF). Results for various properties are obtained for different values of the spin and successfully compared with experimental data.Comment: Proceedings of the Conference "Path Integrals from peV to TeV - 50 Years from Feynman's paper" (Florence, August 1998) -- 2 pages, ReVTeX, 2 figure

    Dispersion managed mode-locking dynamics in a Ti:Sapphire laser

    Full text link
    We present what is to our knowledge the most complete 1-D numerical analysis of the evolution and the propagation dynamics of an ultrashort laser pulse in a Ti:Sapphire laser oscillator. This study confirms the dispersion managed model of mode-locking, and emphasizes the role of the Kerr nonlinearity in generating mode-locked spectra with a smooth and well-behaved spectral phase. A very good agreement with preliminary experimental measurements is found.Comment: 11 pages, 4 figures, submitted to Optics Letter

    Superconducting Fluctuation Corrections to the Thermal Current in Granular Metals

    Full text link
    The first-order superconducting fluctuation corrections to the thermal conductivity of a granular metal are calculated. A suppression of thermal conductivity proportional to Tc/(T−Tc)T_c/(T-T_c) is observed in a region not too close to the critical temperature TcT_c. As T≃TcT\simeq T_c, a saturation of the correction is found, and its sign depends on the ratio between the barrier transparency and the critical temperature. In both regimes, the Wiedemann-Franz law is violated.Comment: 9 pages, 7 figures. Replaced with published version. Important change

    Weak localization effects in granular metals

    Full text link
    The weak localization correction to the conductivity of a granular metal is calculated using the diagrammatic technique in the reciprocal grain lattice representation. The properties of this correction are very similar to that one in disordered metal, with the replacement of the electron mean free path ℓ\ell by the grain diameter dd and the dimensionless conductance gg by the tunnelling dimensionless conductance gTg_{T}. In particular, we demonstrate that at zero temperature no conducting phase can exist for dimensions D≤2D\leq 2. We also analyze the WL correction to magnetoconductivity in the weak field limit.Comment: 4 pages, 3 figures; minor corrections adde

    Sub two-cycle soliton-effect pulse compression at 800 nm in Photonic Crystal Fibers

    Get PDF
    The possibility of soliton self-compression of ultrashort laser pulses down to the few-cycle regime in photonic crystal fibers is numerically investigated. We show that efficient sub-two-cycle temporal compression of nanojoule-level 800 nm pulses can be achieved by employing short (typically 5-mm-long) commercially available photonic crystal fibers and pulse durations of around 100 fs, regardless of initial linear chirp, and without the need of additional dispersion compensation techniques. We envisage applications in a new generation of compact and efficient sub-two cycle laser pulse sources.Comment: 16 pages, 6 figure

    Two-spin entanglement distribution near factorized states

    Get PDF
    We study the two-spin entanglement distribution along the infinite S=1/2S=1/2 chain described by the XY model in a transverse field; closed analytical expressions are derived for the one-tangle and the concurrences CrC_r, rr being the distance between the two possibly entangled spins, for values of the Hamiltonian parameters close to those corresponding to factorized ground states. The total amount of entanglement, the fraction of such entanglement which is stored in pairwise entanglement, and the way such fraction distributes along the chain is discussed, with attention focused on the dependence on the anisotropy of the exchange interaction. Near factorization a characteristic length-scale naturally emerges in the system, which is specifically related with entanglement properties and diverges at the critical point of the fully isotropic model. In general, we find that anisotropy rule a complex behavior of the entanglement properties, which results in the fact that more isotropic models, despite being characterized by a larger amount of total entanglement, present a smaller fraction of pairwise entanglement: the latter, in turn, is more evenly distributed along the chain, to the extent that, in the fully isotropic model at the critical field, the concurrences do not depend on rr.Comment: 14 pages, 6 figures. Final versio

    Reentrant behavior of the phase stiffness in Josephson junction arrays

    Full text link
    The phase diagram of a 2D Josephson junction array with large substrate resistance, described by a quantum XY model, is studied by means of Fourier path-integral Monte Carlo. A genuine Berezinskii-Kosterlitz-Thouless transition is found up to a threshold value g* of the quantum coupling, beyond which no phase coherence is established. Slightly below g* the phase stiffness shows a reentrant behavior with temperature, in connection with a low-temperature disappearance of the superconducting phase, driven by strong nonlinear quantum fluctuations.Comment: 4 pages, 7 figures, to appear in Phys.Rev.Let
    • …
    corecore