1,118 research outputs found
Neutron-star radii based on realistic nuclear interactions
The existence of neutron stars with requires the strong stiffness
of the equation of state (EoS) of neutron-star matter. We introduce a
multi-pomeron exchange potential (MPP) working universally among 3- and
4-baryons to stiffen the EoS. Its strength is restricted by analyzing the
nucleus-nucleus scattering with the G-matrix folding model. The EoSs are
derived using the Brueckner-Hartree-Fock (BHF) and the cluster variational
method (CVM) with the nuclear interactions ESC and AV18. The mass-radius
relations are derived by solving the Tolmann-Oppenheimer-Volkoff (TOV)
equation, where the maximum masses over are obtained on the basis of
the terrestrial data. Neutron-star radii at a typical mass are
predicted to be km. The uncertainty of calculated radii is
mainly from the ratio of 3- and 4-pomeron coupling constants, which cannot be
fixed by any terrestrial experiment. Though values of are not
influenced by hyperon-mixing effects, finely-observed values for them indicate
degrees of EoS softening by hyperon mixing in the region of
. If is less than about 12.4 km, the
softening of EoS by hyperon mixing has to be weak. Useful information can be
expected by the space mission NICER offering precise measurements for
neutron-star radii within .Comment: 8 pages, 7 figure
Bulk and surface-sensitive high-resolution photoemission study of Mott-Hubbard systems SrVO and CaVO
We study the electronic structure of Mott-Hubbard systems SrVO and
CaVO with bulk and surface-sensitive high-resolution photoemission
spectroscopy (PES), using a VUV laser, synchrotron radiation and a discharge
lamp ( = 7 - 21 eV). A systematic suppression of the density of states
(DOS) within 0.2 eV of the Fermi level () is found on decreasing
photon energy i.e. on increasing bulk sensitivity. The coherent band in
SrVO and CaVO is shown to consist of surface and bulk derived
features, separated in energy. The stronger distortion on surface of CaVO
compared to SrVO leads to higher surface metallicity in the coherent DOS
at , consistent with recent theory.Comment: 4 pages 5 figures (including 2 auxiliary figures); A complete
analysis of the spectra based on the surface and bulk analysis shows in
auxiliary figures Fig. A1 and A
Transition Phenomena Induced by Internal Noise and Quasi-absorbing State
We study a simple chemical reaction system and effects of the internal noise.
The chemical reaction system causes the same transition phenomenon discussed by
Togashi and Kaneko [Phys. Rev. Lett. 86 (2001) 2459; J. Phys. Soc. Jpn. 72
(2003) 62]. By using the simpler model than Togashi-Kaneko's one, we discuss
the transition phenomenon by means of a random walk model and an effective
model. The discussion makes it clear that quasi-absorbing states, which are
produced by the change of the strength of the internal noise, play an important
role in the transition phenomenon. Stabilizing the quasi-absorbing states
causes bifurcation of the peaks in the stationary probability distribution
discontinuously.Comment: 6 pages, 5 figure
Doping-dependence of nodal quasiparticle properties in high- cuprates studied by laser-excited angle-resolved photoemission spectroscopy
We investigate the doping dependent low energy, low temperature ( = 5 K)
properties of nodal quasiparticles in the d-wave superconductor
BiSrCaCuO (Bi2212). By utilizing ultrahigh
resolution laser-excited angle-resolved photoemission spectroscopy, we obtain
precise band dispersions near , mean free paths and scattering rates
() of quasiparticles. For optimally and overdoped, we obtain very sharp
quasiparticle peaks of 8 meV and 6 meV full-width at half-maximum,
respectively, in accord with terahertz conductivity. For all doping levels, we
find the energy-dependence of , while () shows a monotonic increase from overdoping to underdoping. The doping
dependence suggests the role of electronic inhomogeneity on the nodal
quasiparticle scattering at low temperature (5 K \lsim 0.07T_{\rm c}),
pronounced in the underdoped region
Orbital-dependent modifications of electronic structure across magneto-structural transition in BaFe2As2
Laser angle-resolved photoemission spectroscopy (ARPES) is employed to
investigate the temperature (T) dependence of the electronic structure in
BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic
transformation in Fermi surface (FS) shape across TN is observed, as expected
by first-principles band calculations. Polarization-dependent ARPES and band
calculations consistently indicate that the observed FSs at kz ~ pi in the
low-T antiferromagnetic (AF) state are dominated by the Fe3dzx orbital, leading
to the two-fold electronic structure. These results indicate that
magneto-structural transition in BaFe2As2 accompanies orbital-dependent
modifications in the electronic structure.Comment: 13 pages, 4 figures. accepted by Physical Review Letter
Search for 60Ni excesses in MET-78008 ureilite: An ion microprobe study
We have developed a technique for in-situ Ni isotopic analysis using the ion microprobe, in order to detect ^Ni excess from the decay of the short lived nuclide ^Fe (half life=1.5Ma) in ureilite samples. The silicate minerals from MET-78008 ureilite with an old U-Pb age of 4.563±0.006 Ga were analyzed. The ^Fe/^Ni ratios of olivine and orthopyroxene are between 2700 and 5400. In spite of the high Fe/Ni ratios, we could not observe any detectable ^Ni excess. From the mean value of olivine core data, we obtain an upper limit of the ^Fe/^Fe ratio at the time of ureilite formation of 1.8×10^. The time difference between CAI formation and ureilite formation was estimated to be more than 4 million years, which is consistent with the UPb data from the same meteorite. We concluded that the impact event for the disruption of the ureilite parent body happened more than 4 million years after CAI formation. However, a large uncertainty in the initial ^Fe/^Fe ratio is introduced by the possibility that the ^Ni excess observed in CAIs is of nucleosynthetic origin. Our conclusion may change if the initial ^Fe/^Fe ratio of the solar system using CAI data is too high
- …