106 research outputs found

    Impact of Birth Weight and Early Infant Weight Gain on Insulin Resistance and Associated Cardiovascular Risk Factors in Adolescence

    Get PDF
    BACKGROUND: Low birth weight followed by accelerated weight gain during early childhood has been associated with adverse metabolic and cardiovascular outcomes later in life. The aim of this study was to examine the impact of early infant weight gain on glucose metabolism and cardiovascular risk factors in adolescence and to study if the effect differed between adolescents born small for gestational age (SGA) vs. appropriate for gestational age (AGA). METHODOLOGY/PRINCIPAL FINDINGS: Data from 30 SGA and 57 AGA healthy young Danish adolescents were analysed. They had a mean age of 17.6 years and all were born at term. Data on early infant weight gain from birth to three months as well as from birth to one year were available in the majority of subjects. In adolescence, glucose metabolism was assessed by a simplified intravenous glucose tolerance test and body composition was assessed by dual-energy X-ray absorptiometry. Blood pressures as well as plasma concentrations of triglycerides and cholesterol were measured. Early infant weight gain from birth to three months was positively associated with the fasting insulin concentration, HOMA-IR, basal lipid levels and systolic blood pressure at 17 years. There was a differential effect of postnatal weight gain on HOMA-IR in AGA and SGA participants (P for interaction = 0.03). No significant associations were seen between postnatal weight gain and body composition or parameters of glucose metabolism assessed by the simplified intravenous glucose tolerance test. In subgroup analysis, all associations with early infant weight gain were absent in the AGA group, but the associations with basal insulin and HOMA-IR were still present in the SGA group. CONCLUSION: This study suggests that accelerated growth during the first three months of life may confer an increased risk of later metabolic disturbances--particularly of glucose metabolism--in individuals born SGA

    Reliable quantification of the potential for equations based on spot urine samples to estimate population salt intake: protocol for a systematic review and meta-analysis.

    Get PDF
    BACKGROUND: Methods based on spot urine samples (a single sample at one time-point) have been identified as a possible alternative approach to 24-hour urine samples for determining mean population salt intake. OBJECTIVE: The aim of this study is to identify a reliable method for estimating mean population salt intake from spot urine samples. This will be done by comparing the performance of existing equations against one other and against estimates derived from 24-hour urine samples. The effects of factors such as ethnicity, sex, age, body mass index, antihypertensive drug use, health status, and timing of spot urine collection will be explored. The capacity of spot urine samples to measure change in salt intake over time will also be determined. Finally, we aim to develop a novel equation (or equations) that performs better than existing equations to estimate mean population salt intake. METHODS: A systematic review and meta-analysis of individual participant data will be conducted. A search has been conducted to identify human studies that report salt (or sodium) excretion based upon 24-hour urine samples and spot urine samples. There were no restrictions on language, study sample size, or characteristics of the study population. MEDLINE via OvidSP (1946-present), Premedline via OvidSP, EMBASE, Global Health via OvidSP (1910-present), and the Cochrane Library were searched, and two reviewers identified eligible studies. The authors of these studies will be invited to contribute data according to a standard format. Individual participant records will be compiled and a series of analyses will be completed to: (1) compare existing equations for estimating 24-hour salt intake from spot urine samples with 24-hour urine samples, and assess the degree of bias according to key demographic and clinical characteristics; (2) assess the reliability of using spot urine samples to measure population changes in salt intake overtime; and (3) develop a novel equation that performs better than existing equations to estimate mean population salt intake. RESULTS: The search strategy identified 538 records; 100 records were obtained for review in full text and 73 have been confirmed as eligible. In addition, 68 abstracts were identified, some of which may contain data eligible for inclusion. Individual participant data will be requested from the authors of eligible studies. CONCLUSIONS: Many equations for estimating salt intake from spot urine samples have been developed and validated, although most have been studied in very specific settings. This meta-analysis of individual participant data will enable a much broader understanding of the capacity for spot urine samples to estimate population salt intake

    Fish Oil Supplementation During Late Pregnancy Does Not Influence Plasma Lipids or Lipoprotein Levels in Young Adult Offspring

    Get PDF
    Nutritional influences on cardiovascular disease operate throughout life. Studies in both experimental animals and humans have suggested that changes in the peri- and early post-natal nutrition can affect the development of the various components of the metabolic syndrome in adult life. This has lead to the hypothesis that n-3 fatty acid supplementation in pregnancy may have a beneficial effect on lipid profile in the offspring. The aim of the present study was to investigate the effect of supplementation with n-3 fatty acids during the third trimester of pregnancy on lipids and lipoproteins in the 19-year-old offspring. The study was based on the follow-up of a randomized controlled trial from 1990 where 533 pregnant women were randomized to fish oil (n = 266), olive oil (n = 136) or no oil (n = 131). In 2009, the offspring were invited to a physical examination including blood sampling. A total of 243 of the offspring participated. Lipid values did not differ between the fish oil and olive oil groups. The relative adjusted difference (95% confidence intervals) in lipid concentrations was −3% (−11; 7) for LDL cholesterol, 3% (−3; 10) for HDL cholesterol, −1% (−6; 5) for total cholesterol,−4% (−16; 10) for TAG concentrations, 2%(−2; 7) for apolipoprotein A1, −1% (−9; 7) for apolipoprotein B and 3% (−7; 15) in relative abundance of small dense LDL. In conclusion, there was no effect of fish oil supplementation during the third trimester of pregnancy on offspring plasma lipids and lipoproteins in adolescence

    Tizanidine does not affect the linear relation of stretch duration to the long latency M2 response of m. flexor carpi radialis

    Get PDF
    The long latency M2 electromyographic response of a suddenly stretched active muscle is stretch duration dependent of which the nature is unclear. We investigated the influence of the group II afferent blocker tizanidine on M2 response characteristics of the m. flexor carpi radialis (FCR). M2 response magnitude and eliciting probability in a group of subjects receiving 4 mg of tizanidine orally were found to be significantly depressed by tizanidine while tizanidine did not affect the significant linear relation of the M2 response to stretch duration. The effect of tizanidine on the M2 response of FCR is supportive of a group II afferent contribution to a compound response of which the stretch duration dependency originates from a different mechanism, e.g., rebound Ia firing

    How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot

    Get PDF
    Increasingly, spatial geochemical zonation, present as geographically distinct, subparallel trends, is observed along hotspot tracks, such as Hawaii and the Galapagos. The origin of this zonation is currently unclear. Recently zonation was found along the last B70 Myr of the Tristan-Gough hotspot track. Here we present new Sr–Nd–Pb–Hf isotope data from the older parts of this hotspot track (Walvis Ridge and Rio Grande Rise) and re-evaluate published data from the Etendeka and Parana flood basalts erupted at the initiation of the hotspot track. We show that only the enriched Gough, but not the less-enriched Tristan, component is present in the earlier (70–132 Ma) history of the hotspot. Here we present a model that can explain the temporal evolution and origin of plume zonation for both the Tristan-Gough and Hawaiian hotspots, two end member types of zoned plumes, through processes taking place in the plume sources at the base of the lower mantle

    Muscle and reflex changes with varying joint angle in hemiparetic stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite intensive investigation, the origins of the neuromuscular abnormalities associated with spasticity are not well understood. In particular, the mechanical properties induced by stretch reflex activity have been especially difficult to study because of a lack of accurate tools separating reflex torque from torque generated by musculo-tendinous structures. The present study addresses this deficit by characterizing the contribution of neural and muscular components to the abnormally high stiffness of the spastic joint.</p> <p>Methods</p> <p>Using system identification techniques, we characterized the neuromuscular abnormalities associated with spasticity of ankle muscles in chronic hemiparetic stroke survivors. In particular, we systematically tracked changes in muscle mechanical properties and in stretch reflex activity during changes in ankle joint angle. Modulation of mechanical properties was assessed by applying perturbations at different initial angles, over the entire range of motion (ROM). Experiments were performed on both paretic and non-paretic sides of stroke survivors, and in healthy controls.</p> <p>Results</p> <p>Both reflex and intrinsic muscle stiffnesses were significantly greater in the spastic/paretic ankle than on the non-paretic side, and these changes were strongly position dependent. The major reflex contributions were observed over the central portion of the angular range, while the intrinsic contributions were most pronounced with the ankle in the dorsiflexed position.</p> <p>Conclusion</p> <p>In spastic ankle muscles, the abnormalities in intrinsic and reflex components of joint torque varied systematically with changing position over the full angular range of motion, indicating that clinical perceptions of increased tone may have quite different origins depending upon the angle where the tests are initiated.</p> <p>Furthermore, reflex stiffness was considerably larger in the non-paretic limb of stroke patients than in healthy control subjects, suggesting that the non-paretic limb may not be a suitable control for studying neuromuscular properties of the ankle joint.</p> <p>Our findings will help elucidate the origins of the neuromuscular abnormalities associated with stroke-induced spasticity.</p

    Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts

    Get PDF
    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host–symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry

    Metabolic profile and psychological variables after bariatric surgery: association with weight outcomes

    Get PDF
    Purpose This study aims to examine associations between metabolic profile and psychological variables in post-bariatric patients and to investigate if metabolic and psychological variables, namely high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), glycated hemoglobin (HbA 1c), impulsivity, psychological distress, depressive and eating disorder symptoms are independently associated with percentage of excess weight loss (%EWL) after bariatric surgery.Methods One hundred and fifty bariatric patients (BMI = 33.04 +/- 5.8 kg/m(2)) who underwent to bariatric surgery for more than 28.63 +/- 4.9 months were assessed through a clinical interview, a set of self-report measures and venous blood samples. Pearson's correlations were used to assess correlations between %EWL, metabolic and psychological variables. Multiple linear regression was conducted to investigate which metabolic and psychological variables were independently associated with %EWL, while controlling for type of surgery.Results Higher TG blood levels were associated with higher disordered eating, psychological distress and depression scores. HDL-C was associated with higher depression scores. Both metabolic and psychological variables were associated with %EWL. Regression analyses showed that, controlling for type of surgery, higher % EWL is significantly and independently associated with less disordered eating symptoms and lower TG and HbA_1c blood concentrations (R-2 aj = 0.383, F (4, 82) = 14.34, p < 0.000).Conclusion An association between metabolic and psychological variables, particularly concerning TG blood levels, disordered eating and psychological distress/depression was found. Only higher levels of disordered eating, TG and HbA_1c showed and independent correlation with less weight loss. Targeting maladaptive eating behaviors may be a reasonable strategy to avoid weight regain and optimize health status post-operatively.This research was partially supported by Fundacao para a Ciencia e a Tecnologia/Foundation for Science and Technology through European Union COMPETE program Grant to Eva Conceicao (IF/01219/2014) and (PTDC/MHC-PCL/4974/2012), doctoral scholarship (SFRH/BD/104159/2014) to Ana Pinto-Bastos and doctoral scholarship (SFRH/BD/104182/2014) to Sofia Ramalho

    Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen.

    Get PDF
    The genus Bartonella comprises facultative intracellular bacteria with a unique lifestyle. After transmission by blood-sucking arthropods they colonize the erythrocytes of mammalian hosts causing acute and chronic infectious diseases. Although the pathogen-host interaction is well understood, little is known about the evolutionary origin of the infection strategy manifested by Bartonella species. Here we analyzed six genomes of Bartonella apis, a honey bee gut symbiont that to date represents the closest relative of pathogenic Bartonella species. Comparative genomics revealed that B. apis encodes a large set of vertically inherited genes for amino acid and cofactor biosynthesis and nitrogen metabolism. Most pathogenic bartonellae have lost these ancestral functions, but acquired specific virulence factors and expanded a vertically inherited gene family for harvesting cofactors from the blood. However, the deeply rooted pathogen Bartonella tamiae has retained many of the ancestral genome characteristics reflecting an evolutionary intermediate state toward a host-restricted intraerythrocytic lifestyle. Our findings suggest that the ancestor of the pathogen Bartonella was a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream. This study highlights the importance of comparative genomics among pathogens and non-pathogenic relatives to understand disease emergence within an evolutionary-ecological framework
    corecore