46 research outputs found

    Dendritic cells in plasmodium infection

    Get PDF
    Infection with Plasmodium parasites (malaria) contributes greatly to morbidity and mortality in affected areas. Interaction of the protozoan with the immune system has a critical role in the pathogenesis of the disease, but may also hold a key to containing parasite numbers through specific immune responses, which vaccine development aims to harness. A central player in the generation of such immune responses is the dendritic cell. However, Plasmodium parasites appear to have profound activating and suppressing effects on dendritic cell function, which may enhance immunopathology or facilitate the parasiteā€™s survival by depressing beneficial immunity. Furthermore, immune responses to other infections and vaccines may be impaired. A greater understanding of the effects of the parasite on dendritic cells will contribute to insight and potential defeat of this infectious disease

    Efficient delivery of small interfering RNA for inhibition of IL-12p40 expression in vivo

    Get PDF
    Background: RNA interference is an evolutionary conserved immune response mechanism that can be used as a tool to provide novel insights into gene function and structure. The ability to efficiently deliver small interfering RNA to modulate gene expression in vivo may provide new therapeutic approaches to currently intractable diseases. Methods: In vitro, siRNA targeting IL-12p40 was delivered to the murine macrophage cell line (J774A.1) encapsulated in a liposome with an IL-12 inducing agent (LPS/IFN-ƎĀ³) over a number of time points. Controls included a variety of non-target specific siRNA reagents. Supernatants were analyzed for cytokine production while the cells were removed for mRNA profiling. In vivo, siRNA-targeting IL-12p40 was delivered to the murine peritoneal cavity in a therapeutic fashion, after endotoxin (LPS) challenge. Cells from the peritoneal cavity were removed by lavage and analyzed by flow cytometry. Levels of IL-12 present in lavage and in serum were also examined by ELISA. Results: In this report, we show that IL-12p40 siRNA can specifically silence macrophage expression of IL-12p40 mRNA and IL-12p70 protein in vitro. We extend this finding to demonstrate that delivery of liposome encapsulated siRNA targeting IL-12p40 to the murine peritoneal cavity can modulate an inflammatory stimulus in vivo. Furthermore, specific siRNA can be used therapeutically after endotoxin challenge to reduce both the local and systemic inflammatory response. Thus, the delivery of siRNA can be used to elicit specific non-permanent inhibition of endogenous protein expression. Conclusion: In vitro silencing of IL-12p40 using siRNA at selected doses leads to specific knockdown of IL-12p70 protein production without inducing type I interferons. Furthermore, siRNA targeting murine IL-12p40 can be used therapeutically to counter an inflammatory response in vivo

    Efficient delivery of small interfering RNA for inhibition of IL-12p40 expression in vivo

    Get PDF
    Background: RNA interference is an evolutionary conserved immune response mechanism that can be used as a tool to provide novel insights into gene function and structure. The ability to efficiently deliver small interfering RNA to modulate gene expression in vivo may provide new therapeutic approaches to currently intractable diseases. Methods: In vitro, siRNA targeting IL-12p40 was delivered to the murine macrophage cell line (J774A.1) encapsulated in a liposome with an IL-12 inducing agent (LPS/IFN-ƎĀ³) over a number of time points. Controls included a variety of non-target specific siRNA reagents. Supernatants were analyzed for cytokine production while the cells were removed for mRNA profiling. In vivo, siRNA-targeting IL-12p40 was delivered to the murine peritoneal cavity in a therapeutic fashion, after endotoxin (LPS) challenge. Cells from the peritoneal cavity were removed by lavage and analyzed by flow cytometry. Levels of IL-12 present in lavage and in serum were also examined by ELISA. Results: In this report, we show that IL-12p40 siRNA can specifically silence macrophage expression of IL-12p40 mRNA and IL-12p70 protein in vitro. We extend this finding to demonstrate that delivery of liposome encapsulated siRNA targeting IL-12p40 to the murine peritoneal cavity can modulate an inflammatory stimulus in vivo. Furthermore, specific siRNA can be used therapeutically after endotoxin challenge to reduce both the local and systemic inflammatory response. Thus, the delivery of siRNA can be used to elicit specific non-permanent inhibition of endogenous protein expression. Conclusion: In vitro silencing of IL-12p40 using siRNA at selected doses leads to specific knockdown of IL-12p70 protein production without inducing type I interferons. Furthermore, siRNA targeting murine IL-12p40 can be used therapeutically to counter an inflammatory response in vivo

    Efficient delivery of small interfering RNA for inhibition of IL-12p40 expression in vivo

    Get PDF
    Background: RNA interference is an evolutionary conserved immune response mechanism that can be used as a tool to provide novel insights into gene function and structure. The ability to efficiently deliver small interfering RNA to modulate gene expression in vivo may provide new therapeutic approaches to currently intractable diseases. Methods: In vitro, siRNA targeting IL-12p40 was delivered to the murine macrophage cell line (J774A.1) encapsulated in a liposome with an IL-12 inducing agent (LPS/IFN-ƎĀ³) over a number of time points. Controls included a variety of non-target specific siRNA reagents. Supernatants were analyzed for cytokine production while the cells were removed for mRNA profiling. In vivo, siRNA-targeting IL-12p40 was delivered to the murine peritoneal cavity in a therapeutic fashion, after endotoxin (LPS) challenge. Cells from the peritoneal cavity were removed by lavage and analyzed by flow cytometry. Levels of IL-12 present in lavage and in serum were also examined by ELISA. Results: In this report, we show that IL-12p40 siRNA can specifically silence macrophage expression of IL-12p40 mRNA and IL-12p70 protein in vitro. We extend this finding to demonstrate that delivery of liposome encapsulated siRNA targeting IL-12p40 to the murine peritoneal cavity can modulate an inflammatory stimulus in vivo. Furthermore, specific siRNA can be used therapeutically after endotoxin challenge to reduce both the local and systemic inflammatory response. Thus, the delivery of siRNA can be used to elicit specific non-permanent inhibition of endogenous protein expression. Conclusion: In vitro silencing of IL-12p40 using siRNA at selected doses leads to specific knockdown of IL-12p70 protein production without inducing type I interferons. Furthermore, siRNA targeting murine IL-12p40 can be used therapeutically to counter an inflammatory response in vivo

    Screening vaccine formulations for biological activity using fresh human whole blood.

    Get PDF
    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans. For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety. The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression

    T Cell Memory to Vaccination

    Get PDF
    Most immune responses associated with vaccination are controlled by specific T cells of a CD4+ helper phenotype which mediate the generation of effector antibodies, cytotoxic T lymphocytes (CTLs), or the activation of innate immune effector cells. A rapidly growing understanding of the generation, maintenance, activity, and measurement of such T cells is leading to vaccination strategies with greater efficacy and potentially greater microbial coverage

    Erratum: Malaria vaccines: the stage we are at

    No full text

    Efficient delivery of small interfering RNA for inhibition of IL-12p40 expression in vivo

    No full text
    Background: RNA interference is an evolutionary conserved immune response mechanism that can be used as a tool to provide novel insights into gene function and structure. The ability to efficiently deliver small interfering RNA to modulate gene expression in vivo may provide new therapeutic approaches to currently intractable diseases. Methods: In vitro, siRNA targeting IL-12p40 was delivered to the murine macrophage cell line (J774A.1) encapsulated in a liposome with an IL-12 inducing agent (LPS/IFN-ƎĀ³) over a number of time points. Controls included a variety of non-target specific siRNA reagents. Supernatants were analyzed for cytokine production while the cells were removed for mRNA profiling. In vivo, siRNA-targeting IL-12p40 was delivered to the murine peritoneal cavity in a therapeutic fashion, after endotoxin (LPS) challenge. Cells from the peritoneal cavity were removed by lavage and analyzed by flow cytometry. Levels of IL-12 present in lavage and in serum were also examined by ELISA. Results: In this report, we show that IL-12p40 siRNA can specifically silence macrophage expression of IL-12p40 mRNA and IL-12p70 protein in vitro. We extend this finding to demonstrate that delivery of liposome encapsulated siRNA targeting IL-12p40 to the murine peritoneal cavity can modulate an inflammatory stimulus in vivo. Furthermore, specific siRNA can be used therapeutically after endotoxin challenge to reduce both the local and systemic inflammatory response. Thus, the delivery of siRNA can be used to elicit specific non-permanent inhibition of endogenous protein expression. Conclusion: In vitro silencing of IL-12p40 using siRNA at selected doses leads to specific knockdown of IL-12p70 protein production without inducing type I interferons. Furthermore, siRNA targeting murine IL-12p40 can be used therapeutically to counter an inflammatory response in vivo
    corecore