30 research outputs found

    Design Time Optimization for Hardware Watermarking Protection of HDL Designs

    Get PDF
    HDL-level design offers important advantages for the application of watermarking to IP cores, but its complexity also requires tools automating these watermarking algorithms. A new tool for signature distribution through combinational logic is proposed in this work. IPP@HDL, a previously proposed high-level watermarking technique, has been employed for evaluating the tool. IPP@HDL relies on spreading the bits of a digital signature at the HDL design level using combinational logic included within the original system. The development of this new tool for the signature distribution has not only extended and eased the applicability of this IPP technique, but it has also improved the signature hosting process itself. Three algorithms were studied in order to develop this automated tool. The selection of a cost function determines the best hosting solutions in terms of area and performance penalties on the IP core to protect. An 1D-DWT core and MD5 and SHA1 digital signatures were used in order to illustrate the benefits of the new tool and its optimization related to the extraction logic resources. Among the proposed algorithms, the alternative based on simulated annealing reduces the additional resources while maintaining an acceptable computation time and also saving designer effort and time

    Agent-Based Modeling of the Demand and Supply for Transportation in the U.S., 2025-2040

    No full text

    Hardware/software co-design for real time embedded image processing: A case study

    No full text
    Many image processing applications need real time performance, while having restrictions of size, weight and power consumption. These include a wide range of embedded systems from remote sensing applications to mobile phones. FPGA-based solutions are common for these applications, their main drawback being long development time. In this work a co-design methodology for processor-centric embedded systems with hardware acceleration using FPGAs is applied to an image processing method for localization of multiple robots. The goal of the methodology is to achieve a real-time embedded solution using hardware acceleration, but with development time similar to software projects. The final embedded co-designed solution processes 1600×1200 pixel images at a rate of 25 fps, achieving a 12.6× acceleration from the original software solution. This solution runs with a comparable speed as up-to-date PC-based systems, and it is smaller, cheaper and demands less power. © 2012 Springer-Verlag.Fil:Pedre, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
    corecore