1,726 research outputs found

    Integrating evidence for managing asthma in patients who smoke

    Get PDF
    Peer reviewedPublisher PD

    Detection and Modeling of Radiation Induced Effects in Tissues by Dielectric Spectroscopy

    Get PDF
    The work presented here is applied physics research in the field of radiation treatment. We address the development of a new and innovative method, in vivo and possibly non-invasive, for tumor and healthy tissues control during and after the radiation treatment. The radiation treatment is delivered in an almost standardized manner for particular classes of tumors. The large variance in the individual radio sensitivity of healthy tissues and tumors often leads to local recurrence of neoplastic growth and/or distant metastatic disease which often remains untreated. The method is based on the measurement and analysis of electrical impedance data in the frequency domain from 50 mHz to 1MHz. The dielectric signature of the tissue carries information about the integrity of the plasma membrane, as well as about the tissue micro-architecture. We present dielectric models for biological materials and correlate their parameters with the subtle changes characterizing oncosis or apoptosis occurring as result of radiation or excision. Five tissue types (blood, kidney, liver, lung and heart) were studied and specific impedance models were created for each of them. Based on these models, analysis of freshly excised tissue and radiation-induced effects in excised tissue was carried out and model parameters extracted. The data we present shows correlation between known mechanisms of cellular death and the delivery of radiation, thus making possible a quantification of the individual response. Further work will be needed in order to correlate early impedance changes with late tissue changes characterizing the side effects of the radiotherapy

    Monte-Carlo simulations of photohadronic processes in astrophysics

    Get PDF
    A new Monte Carlo program for photohadronic interactions of relativistic nucleons with an ambient photon radiation field is presented. The event generator is designed to fulfil typical astrophysical requirements, but can also be used for radiation and background studies at high energy colliders such as LEP2 and HERA, as well as for simulations of photon induced air showers. We consider the full photopion production cross section from the pion production threshold up to high energies. It includes resonance excitation and decay, direct single pion production and diffractive and non-diffractive multiparticle production. The cross section of each individual process is calculated by fitting experimental data, while the kinematics is determined by the underlying particle production process. We demonstrate that our model is capable of reproducing known accelerator data over a wide energy range.Comment: 39 pages, 17 figures, submitted to Comp.Phys.Co

    Influence of the van Hove singularity on the specific heat jump in BCS superconductors

    Full text link
    Within the weak-coupling BCS scheme we derive a general form of the coefficients in the Ginzburg-Landau expansion of the free energy of a superconductor for the case of a Fermi level close to a van Hove singularity (VHS). A simple expression for the influence of the VHS on the specific heat jump is then obtained for the case where gaps for different bands are distinct but nearly constant at the corresponding sheets of the Fermi surface.Comment: 8 pages, 2 figures, LaTeX2

    Conical refraction healing after partially blocking the input beam

    Get PDF
    In conical refraction, when a focused Gaussian beam passes along one of the optic axes of a biaxial crystal it is transformed into a pair of concentric bright rings at the focal plane. We demonstrate both theoretically and experimentally that this transformation is hardly affected by partially blocking the Gaussian input beam with an obstacle. We analyze the influence of the size of the obstruction both on the transverse intensity pattern of the beam and on its state of polarization, which is shown to be very robust

    Neutrinos: the Key to UHE Cosmic Rays

    Full text link
    Observations of ultrahigh energy cosmic rays (UHECR) do not uniquely determine both the injection spectrum and the evolution model for UHECR sources - primarily because interactions during propagation obscure the early Universe from direct observation. Detection of neutrinos produced in those same interactions, coupled with UHECR results, would provide a full description of UHECR source properties.Comment: three pages, three figures. corrected typo
    corecore