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ABSTRACT
DETECTION AND MODELING OF RADIATION INDUCED EFFECTS 

IN TISSUES BY DIELECTRIC SPECTROSCOPY 

Dorin A. Todor 

Old Dominion University, 1999 

Director: Dr. Gary E. Copeland

The work presented here is applied physics research in the field of radiation treatment. 

We address the development of a new and innovative method, in vivo and possibly non- 

invasive, for tumor and healthy tissues control during and after the radiation treatment. 

The radiation treatment is delivered in an almost standardized manner for particular 

classes of tumors. The large variance in the individual radiosensitivity o f healthy tissues 

and tumors often leads to local recurrence of neoplastic growth and/or distant metastatic 

disease which often remains untreated. The method is based on the measurement and 

analysis of electrical impedance data in the frequency domain from 50 mHz to I MHz. 

The dielectric signature of the tissue carries information about the integrity of the plasma 

membrane, as well as about the tissue micro-architecture. We present dielectric models 

for biological materials and correlate their parameters with the subtle changes 

characterizing oncosis or apoptosis occurring as result of radiation or excision. Five 

tissue types (blood, kidney, liver, lung and heart) were studied and specific impedance 

models were created for each of them. Based on these models, analysis o f freshly excised 

tissue and radiation-induced effects in excised tissue was carried out and model 

parameters extracted. The data we present shows correlation between known mechanisms 

of cellular death and the delivery of radiation, thus making possible a quantification of 

the individual response. Further work will be needed in order to correlate early 

impedance changes with late tissue changes characterizing the side effects of the 

radiotherapy.
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CHAPTER I 

INTRODUCTION

Every year, about 1.25 million people in the United States are diagnosed with life- 

threatening forms of cancer*. About 60% of these patients are treated with radiation and 

half of them are considered curable because their tumors are localized and susceptible to 

radiation. Radiation therapy has been used to treat cancer for over 100 years. The most 

common type of radiation therapy uses photon beams with energy of 6-20 MeV. 

Electrons of similar energies are used for treating superficial tumors. While the photons 

and electrons are the mainstream particles used in radiation therapy, a number of other 

particles are used: protons, pions, neutrons, heavy ions, but their use is severely limited 

by both equipment availability and cost. The goal of radiation therapy is the killing (or 

inactivation) of cancer cells in tumors, while minimizing the effects on the normal tissue. 

In the last two decades, the development of the three-dimensional conformal 

radiotherapy, allowed precise delimitation of the targets (presumably the tumor) and the 

delivery of high radiation doses while sparing as much as possible the healthy tissue and 

avoiding normal tissue complications. More recently, the Intensity Modulated Radiation 

Therapy (IMRT) allowed the escalation of the prescribed doses close to 90 Gy with a 1% 

precision in the dose distribution.

However, despite the accuracy with which a radiation dose can be delimited to a 

given 'target’ volume, there is a great uncertainty about the effectiveness of that dose. 

John Cameron, a well-known medical physicist, Emeritus Professor University of 

Wisconsin-Madison, states very clearly the current situation in radiation dosimetry: "..it 

is likely that the present physical dosimetry (J/kg) is much more accurate than we need. 

The physics o f dosimetry is in much better shape than (our knowledge of) the biological 

response o f the cancer and o f the normal tissues to the dose. That is the hard part and it 

is often ignored. Even a given type o f  cancer can vary greatly in its response and so can 

the response o f the normal tissues o f  the patient." A very recent article [1] coming from 

one of the leaders in the field of radiotherapy research, stresses that "The ability o f  IMRT

i The journal model for this thesis is Physical Review E
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to paint (in 2D) or "sculpt" (in 3D) the dose, and produce exquisitely conformal dose 

distributions... begs the ”64 million dollar question” as to HOW to paint or sculpt”.

The answer, or at least a good part of it, seems to be the newly proposed concept 

of "biological target volume". This would imply the use of biological images, which in 

contrast with the conventional radiological images will carry physiological and functional 

information about the tumors and surrounding normal tissue. There is now, the authors 

conclude, a tremendous need for new and if possible, non-invasive methods, yielding 

radiobiological information. NMR spectroscopy, using as imaging parameters the proton 

(or other nuclei) density and relaxation times and PET (positron emitted tomography) 

using FDG (fluorodeoxyglucose radiolabeled with ,8F) as tracer can provide metabolic 

and functional information. The vital processes at the cell level, as well as cooperative 

processes at the tissue level are, in their essence, electrochemical processes. The transport 

of electrons, protons and ions is of paramount importance for living matter. It is almost 

natural to think of the dielectric properties - conductivity and permittivity - as parameters 

that can be imaged with the hope of obtaining subtle, structural and functional 

information at cell and tissue level.

The measurements of electrical properties of biological materials held, 

historically, a pre-eminent position in biophysics and physiology. The study of dielectric 

properties of matter was pioneered by Debye [2], Van Vleck [3], Frohlich [4] et al. but 

soon turned out to be an important tool in the study of living matter, too. Initially, the 

physicist’s territory, dielectric and electronic properties of biomolecules, cells and tissues 

is now used widely by biochemists, biologists, medical doctors, electrical engineers, etc. 

When dielectric properties are investigated, one can model the system in a multitude of 

ways: from a mixture of spheres in a conducting fluid, to a heterogeneous disordered 

media, or a fractal, a percolation system, or a colloidal suspension. Such a system can be 

described, under the right assumptions, as open or closed, linear or nonlinear, 

deterministic or chaotic, classic or quantum, etc.

Understanding radiation interaction with living matter and finding suitable models 

for radiation induced effects, implies not only the physics o f the elementary energy 

deposition processes, but statistical and condensed matter, colloid physics, radiation 

chemistry and radiation biology as well. One of the difficulties of studying a biological
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tissue is that the model has to be as simple as possible but at the same time still relevant 

for its microstructure and functionality. The radiation effects are relatively well described 

in simple systems, like semiconductors - mainly because of the needs of the space 

research - or in insulating, non-polar liquids. But where is the complexity threshold for 

modeling biological systems under the effect of ionizing radiation? Of course, from the 

biology standpoint, all the important phenomena are related to the cell - as fundamental 

organizational element - and its structure and dynamical behavior. A suitable 

mathematical model would be a system composed of many interacting cells, the 

interaction being mediated by contact (gap junctions) or diffusion or indirectly through 

the extracellular matrix. Organization of cells distributions and aggregation is known to 

strongly depend on the interaction parameters (with evidence that the cancer cells are less 

"gregarious" than the healthy ones). When considering dielectric properties as markers of 

the radiation induced effects, we have to take into account not only the structure of the 

tissue and cells but also their change in functionality and dynamics after the injury, along 

with known biochemical effects. These are, in broad terms the coordinates on which this 

work is placed.

We have investigated the dielectric properties of tissues (blood, lung, kidney, 

liver, heart) as a function of time, in response to irradiation, during the treatment and at 

early times after. Experiments were performed at Virginia Beach General Hospital 

(VBGH) on rat tissue samples freshly excised. The hope is that the dynamics of dielectric 

parameters can be used to assess the cell death progression and thus to provide feedback 

guiding the delivery (dose and timing) o f the radiation treatment. The challenge is 

twofold: the experiments at these frequencies have to be carried out with numerous 

precautions; the second is the scarcity of models for low frequency dispersion in complex 

systems like tissues, as well as the lack o f precedent as to how to relate radiation-induced 

effects to parameters accessible to dielectric measurements.

The technique can be developed as a non-invasive one because electrodes are 

applied on the skin, but other non-contact approaches are also at the horizon. In recent 

years, NMR was combined with current injection [5,6] and specific ways of processing 

the signal, to yield, with the high resolution characterizing NMR, dielectric parameters as 

new imaging parameters. Neoplastic (cancerous) tissue causes alterations in intracellular
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and extracellular fluid compartments, cell membrane surface area, ionic permeability, and 

membrane associated water layers. Impedance tomography, the spatial resolved version 

of electrical impedance spectroscopy has already gained acceptance in the medical world 

by the recent authorization by FDA of an impedance-based device, T-Scan2000, for the 

detection of breast cancer tumors [7].

In Chapter II we review the main mechanisms of interaction of radiation with 

matter. The first part is devoted to brief descriptions of the photon interaction: the 

photoelectric effect, Compton scattering, pair production. We then continue with 

fundamentals of electron interaction processes. Given that the processes categorized as 

physical only account for the very early (1 0 18 to 10‘9 s) energy deposition events, we 

describe the timing and spatial extent of the whole process, continuing with elements of 

aqueous radiation chemistry and the specifics of radiation effects on cells. The last part of 

this chapter is an overview of the mechanisms of cell death and their relevance in the 

context of both radiation therapy and dielectric studies. The understanding of apoptosis, 

oncosis and necrosis is central to the rationale of using the dielectric properties of tissues 

as markers of the radiation induced injury and its progress.

A self-consistent description of dielectric properties o f matter, with emphasis of 

cells and tissues, is the subject of Chapter III. After a practical definition of permittivity 

and conductivity, the Debye relaxation mechanism is introduced, together with several 

representations (e.g. Cole-Cole) plot. Under the general heading "non-Debye 

mechanisms" a number of dielectric relaxation features, especially important in 

heterogeneous and disordered systems, is discussed next. The classification of a , (i, Cl, y, 

dispersions in tissues is explained with emphasis to the relaxation mechanisms 

contributing. Extremely important in inhomogeneous materials, the Maxwell-Wagner 

interfacial polarization, for spherical and ellipsoidal particles, as well as special cases of 

high concentration mixtures are presented in detail. For cellular systems, a correct 

understanding of their components, structure and function, is important for an efficient 

modeling as electrochemical systems. These, as well as other important issues, like 

surface conductivity, counterion polarization and low frequency dispersions (LFD) 

phenomena are the subject o f the last part of this chapter.
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Chapter IV is dedicated to the presentation of electrical impedance spectroscopy. 

The method, the experimentally accessible parameters and the technique used in our 

experiments - the frequency response analysis - are explained.

In Chapter V we describe the experimental method. The main issues are: the 

apparatus for impedance measurement, the cell measurement design and the irradiation 

environment. Also, important contributors to the success of the experimental 

measurement of impedance, like temperature control and electrode polarization, are 

discussed, and specific methods we choose to solve them, are given.

By far the largest. Chapter VI is devoted to the presentation and analysis of the 

experimental data. As a preamble to data analysis, we started by discussing methods used 

for validating the data. A critical view towards data modeling is also given at the 

beginning of the chapter. Each of the five tissue types (blood, kidney, liver, lung and 

heart) we studied is described in the following succession: we started with an overview of 

the tissue specific structure, function and dielectric properties. Whenever known, 

radiation effects and their possible relation to changes of dielectric properties, are 

discussed. After the presentation of the experimental results, we assemble the model used 

to interpret the data; when more than one model is discussed, we give the rationale for 

that and a comparison is being made. At the end, conclusions are draw on whether the 

dielectric changes are consistent with the radiation-induced changes in the morphology 

and microstructure of the tissue.

Conclusions are the subject of Chapter VII. In spite of the differences between the 

tissues analyzed, a unitary explanation based on Jonscher’s "universal dielectric 

relaxation" is attempted. General conclusions on the method’s efficiency and possible 

future developments wrap up the presentation of the thesis.
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CHAPTER H 

IONIZING RADIATION

The interaction of radiation with matter

When radiation is delivered to an organism with the intent of inactivating (or killing) its 

cells, the physics of energy deposition is only the first stage. It has to be followed by the 

radiation chemistry and radiation biology. In this chapter, I will try to present the relevant 

processes, their description, magnitude and importance, with emphasis on charge carriers 

and radiation induced conductivity changes. We will first review the interaction of 

ionizing radiation with matter. Since water is the essentia! Ingredient’ in the life forms 

that are of interest for us (mammalian cells) the radiochemistry of water will be briefly 

described next.

At the very elementary level, we know what these mechanisms are and we can 

describe them fairly accurately. We will limit our discussion to photons, since it 

represents about 90% of the radiation therapy modality and it was the only type of 

radiation used in our experiment. For photons, the photoelectric effect, Compton 

scattering and pair production are the primary channels through which a beam of 

intensity l0 is attenuated after passing a slab of material of thickness x. The dependence of 

intensity I of x  is known as the Lambert law:

( 1)

where p. is the total linear absorption coefficient (expressed in cm'1). The law holds only 

for a monochromatic beam and as consequence the energy transferred to a medium has a 

much more complex form. The total absorption coefficient p is the sum of the ’partial’ 

absorption coefficients, governing the three processes described. With the notation <ja for 

Compton absorption, t  for photoelectric absorption and ic for pair production, the linear 

coefficient of attenuation for photons in water (represented in Figure I) will be:
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f ia =<Ta + T + K ,  (2)

The attenuation produced by a certain thickness .r of material depends either on the 

density of electrons with which the photons interact or the density of the atoms. The 

former is most important for biological tissue systems. A more fundamental quantity, the 

mass attenuation coefficient (units of cm2/g), can be obtained by dividing the above 

quantities by the density p. The dependence of the mass attenuation coefficient on energy 

is shown in Figure I, below:

WATER

CM

0.2

0.01

0.06

0.03

0.001

Photon Energy (Mev)

FIG. 1. Mass attenuation coefficients for photons in water (from [8])
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Photoelectric effect

In the photoelectric process, a photon is completely absorbed with the ejection of one 

electron, the kinetic energy of which is equal to the difference h  v-Ib  ( v  is the frequency of 

the incident photon and Ib is the binding energy of the electron in the atom) except for a 

negligible quantity which is the energy imparted to the remaining atom. The probability 

of interaction is maximum when the energy of the photon just exceeds Ib , the cross 

section exhibits sharp changes for the so-called orbital edges, K, L, etc. In tissues, the 

energy transferred to the atom by the photon is equal to the energy absorbed and both are 

nearly equal to h v.

Given that the tissue elements are low Z elements with very small binding energies 

(smaller than 500 eV), essentially all the photon incident energy is absorbed. The 

distribution of the photoelectron is forward for high photon energy and almost 

perpendicular with respect to the incident photon for low energies, a dipole pattern.

Compton Scattering

The Compton interaction is an elastic collision between a photon and a loosely bound 

electron. We can actually distinguish a coherent scattering process (Rayleigh scattering) 

and an incoherent one. In the first kind there is in fact no transfer of energy from the 

incident photon to the medium; the only result is an increase in the angular dispersion of 

the photon beam. Given also the small cross section of the process for small Z materials, 

at energies greater than 100 keV, there is no interest with respect to chemical or 

biological events. The incoherent Compton scattering is one of the most important 

mechanisms of interaction or photon beams with tissue like materials.

After a simple derivation using classical mechanical arguments, one can write simple 

expressions for the scattered photon and (an unbound) electron:

_ a r(l-c o s0 )
E. = hv— -------- —  and

hv '= hv

l+ a ( l - c o s 0 )  

1
I+ a r ( l-c o s 0 ) ’

(3)
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where a  = hv/m acl and B is the photon scattering angle.

. One can see (Figure 2), that the transfer of energy to the tissue becomes important 

only for a  = hv/mnc2 >0.1, which translates into photon energies greater than 50 keV.

To estimate the total energy transferred by Compton scattering, we have to take into 

account the differential cross section for the process, the well know Klein-Nishina 

formula:

da,
dQ  2m;c4

1 v

l+ a ( l- c o s 0 )
l+ cos20 +

or ( l - c o s 0 ) ‘ 
l+ a ( l- c o s 0 )

(4)

where e and m are the charge and mass of the electron, 6  is the photon scattering angle 

and a  was previously defined.

B hv

0 6

O S
a = 1

0 4

02
01

1 6
0

FIG. 2. Energy transferred to the electron as a fraction of the photon scattering angle.

From this, one can obtain the spectrum of Compton electrons. Qualitatively, the electron 

will have a maximum energy less than the energy of the incident photon, and the 

distribution goes through a minimum, so the probability is larger for small and high 

energy, rather than intermediate ones.
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Adjustments can be made to consider the binding energy of the electrons, but since the 

only part in which there are significant differences in the KN coefficients is at low 

energies, it is insignificant at photon energies of interest for biological processes.

Pair Production

While Compton scattering and the photoelectric effect involved photon interactions with 

an electron, the next significant channel for energy absorption - pair production - deals 

with photon interactions with nuclei. An energetic photon ( E  > 2 0 .51 \MeV  ),interacting 

with a nucleus can decay into a positron-electron pair. The cross section for the process is 

proportional to Z2, but a correction needs to be applied for large energies, due to the 

screening of the nuclear charge by the electrons. The atomic cross section for pair 

production is, in a first approximation, Ka = ln(/iv) [9]. In water, pair production becomes 

significant for photon energies greater than 3 MeV. The kinetic energy of the produced 

pair is simply the energy balance between the energy of the incoming photon and the 

necessary energy to produce a pair of electrons:

E „ = h v - \  .022 (MeV). (5)

The real energy absorbed by the tissue is more difficult to find since the two electrons 

may lose energy by bremsstrashlung. When the positron loses energy, it might interact 

with a free electron to produce two annihilation photons. These will be further treated as 

scattered photons from Compton process.

After this brief review of the main mechanisms by which photons interact with 

matter, we can conclude that, regardless of the mechanism, the important phenomenon, 

leading to chemical changes, is the generation of secondary electrons. We will now 

discuss the interaction o f charged particles - electrons - with matter. The best known 

macroscopically quantity related to the slowing down process is the stopping power1 of 

the medium. The two important types of interaction between electrons and matter is 

bremsstrashlung, at high energies and Rutherford collisions at low energies. The stopping
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power for electrons (in the range E < LOO MeV), incident upon a material with atomic 

number Z  can be calculated using the expression given by Bethe and Ashkin [10]:

dE 2xNe*Z  
dx m y lQg .  ™fEai, ~(2N/T: ^ T- 1+1 2)l°g 2

i r - a - f i 2)
(6)

where: -d E /d x  is the stopping power or the energy loss per unit path, N  is the number of 

atoms per cm3, Z is the atomic number of the stopping material and /  is the average 

excitation potential of the atom for the stopping material (66 eV for water), E  the kinetic 

energy of the electron, v its velocity (in cm/s), /? = v /c , and c is the speed of Light. The 

energy loss for electrons with an initial energy of lOkeV in water is 0.22 eV/A but falls to

0.02eV/A for E=400keV and remains practically constant as E continues to rise.

o X

E

0 x

FIG. 3. Schematic representation of energy and stopping power dependence on the path 
in matter, for electrons, (adapted from [12])

An important correction has to be made for the passage of a charge particle 

through a dense medium. The polarization of the medium under the influence of the 

electric filed of the passing particle will in fact weaken the influence of the atomic 

electrons and as a result the stopping power of the medium will be reduced. Formula (6) 

contains corrections due to relativistic, shell and the density effects discussed.

1 Defined as the rate of energy loss per unit of path length.
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For molecular media, Bragg put forward a simple rule: if a substance is represented by a 

chemical compound AmBm composed of m atoms A and n atoms B, then the relation 

between its stopping power and that of its constituents is:

The implicit assumption here is that the chemical bonds between atoms do not affect the 

interaction of the particle with the atomic electrons. Experiments have shown that, in 

general, the stopping power is slightly over-evaluated by the Bragg’s composite law.

For electrons penetrating a medium, there are two mechanisms of stopping: ionization 

and radiative. The energy transferred by all processes and absorbed in the medium 

defines the dose D, formally, energy deposited per unit mass:

dm

The unit for dose is Gray (1 Gray=l Joule/1 kg) but older units (e.g. I rad = I O'2 Gy) are 

still tolerated.

Spatial and time Dependence o f Energy Deposition

So far, we have discussed fundamental processes which have little do to with the effects 

at the cellular level. Remembering that the goal of the irradiation process is to create 

damage, let’s turn to the typical track structures created by energy deposition and what is 

the timing of the processes initiated by the energy deposition.

Ionizing radiation imparts primary energy to matter in discrete packets (“energy 

deposits’’) conveniently categorized [11] according to the energy deposited, as spurs ( -  6 

to 100 eV), blobs ( -  100 to 500 eV), and track segments (~ 500 to 5000 eV). As an 

example, a 1 MeV electron spends 65% of its energy to produce isolated spurs, 15% in 

blobs and 20% in short tracks, while a 10 MeV electron creates isolated spurs to the 

extent of 76% of its energy, 8% for blobs and 16% for short tracks. In aqueous media, the 

spurs and blobs created are associated with roughly spherical regions about 4 and 7 nm in

dx

\
f  d E \+/1 — —

h dx I
(7)
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diameter, respectively. Short track segments in aqueous media impart their energy to 

spheroid shaped regions of matter with dimensions on the order of 25 to 75 nm. Right 

after the energy absorption, a number o f "primary products" are created: electrons, ions, 

free radicals, excited states, etc.

Q. 100

ISOLATED SPURSHORT TRACK

m 40 o
<  30

ISOLATEO BLOSS

5k 7k 10k 20k 50k 100k 200k 500k IM 2M 5M 10M

PRIMARY ELE C TR O N  ENERGY

FIG. 4. Different types o f energy localization in water as a function of primary electron
energy [11].

The term primary can be better understood if we relate it to the time needed for radiation 

(electromagnetic or charged particle) to traverse a typical molecular distance of the order 

of few A: 10'18 - 10 17 s. Following energy deposition the excited and charge species 

formed will undergo a series o f deexcitation, thermalization, neutralization processes to 

form more stable radiolytical species. A sampling of the chronology of events, from the 

energy deposition, to the appearance o f primary species and their diffusion, to the 

damage of the biological molecules and its repair, is presented in Table I.

At the beginning, the important processes leading to the formation of free-radical 

products are the following. First there is the ionization and excitation o f water molecules:

H ,0= > e~+ H 20+ and
. 2 (9)

H ,0= > H zO .
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TABLE I. Timing of processes from energy deposition to biological effect

Event Time (s)

Traversal of a molecular diameter by a high-energy electron 10IS

Ionization and excitation 1017 - 10'1

Relaxation of excited states 10'15 - 10‘

Dissociation of excited molecules 1014

Thermalization of secondary electrons in water 10'13

Fluorescence I O'9

Lifetime of the spur in liquid water 10~7

Phosphorescence 103

Damage to important biological molecules 10'3

Enzymatic repair of molecular damage minutes

Biological repopulation from survival cells hours

The electrons ejected in the ionization process become thermalized and hydrated

« '= > < ,•  (10)

An electron slowed down in a liquid of high e (~80 for water), will give rise to an 

orientation of the dipoles (water molecules) in its radial electric field. The electron is 

trapped almost as effective as if it were bound to a nucleus. A new entity is formed, the 

solvated electron ("hydrated" in the case of water). It is thought that the electron interacts 

strongly with a "solvation shell", the closest four to six water molecules, by short-range 

charge-dipole (permanent and induced) attraction. The H 20*  ions then undergo a proton 

transfer reaction with neighboring water molecules:

H20* + H20= > H 30 * + 0 H .  (11)

An excited water molecule dissociates into a hydrogen atom and a hydroxyl radical
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h 2o '= * h + o h  . ( 12)

In water, however, the contribution of excited molecules to the formation of free radicals 

is minor compared to that of ionization processes.

An important quantity related to the these primary species is the yield G, the number of 

free radicals (H, OH or e-) or molecules (H2 or H2O2) created per absorbed 100 eV. 

Knowing G, one can find the rate of radical production which is the product o f dose rate 

and G. Average values of yields for the free radicals or molecules mentioned are:

The fate of the free radicals created in aqueous solutions depends on very many factors, 

among them being: pH, temperature, scavengers concentration, dose rate, etc. The 

radiochemistry of water and organic liquids are sub-fields o f study by themselves. We 

will address the known reactions of free radicals with biopolymers, the most notable 

being DNA. About 20% of the OH radicals will react with the sugar links (deoxyribose) 

in the DNA chains, leading to strand breaks (breaks of the sugar-phosphate bonds). The 

yield of strand breaks in DNA is G = 0.2-0.8 for ssb (single strand breaks) and G = 3- 

9-1 O'2 for dbs (double strand breaks). For chromatin DNA the values are about 100 times 

smaller. The subject of DNA damage and its importance in the radiobiological process 

will be discussed in more detail in the next section.

The state of the irradiated water after about I0'9s, when the reactions in the 

deposition structures are terminated can be described as:

H ,0 irradiation (13)
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Biological effects of ionizing radiation

Radiation effects on individuals are a function of the radiation effects on the cells which 

make up various organs and systems of the body. All biological effects can be traced to 

damage on the level of individual cells, the specific effect being dependent on the type 

and extent of damage. The class of lesions that most closely correlates with cell death is 

the DNA double strand break but in recent years other targets have been recognized, 

including the cell membrane. Enzymatic pathways can quickly and effectively repair the 

majority of lesions. Misrepaired lesions, lead to mutations and clonogenic2 cell death. 

Details about radiation induced cell death, central to our study, will be given in the 

following section on cell death.

There are two basic ways to characterize the influence of radiation on cells, direct 

effects and indirect effects. The direct effect can be defined as direct ionization of DNA 

or other structure by radiation. When passing particles, either primary radiation particles 

or secondary ones (i.e., the 6-rays created by the passage of a single primary radiation 

particle) deposit energy to matter in a volume of interest (e.g., the cell nucleus), a 

radiation event occurs. These events, considering DNA as a primary target, are the single 

break strands (sbs) and doubles break strands (dbs).

The indirect effect consists o f ionization of water molecules within the cell with 

the creation of very chemically active agents (free radicals) which in turn, can chemically 

attack other molecules in their immediate vicinity. If a DNA molecule is located in this 

area, alteration to the DNA molecule can occur. Since studies have shown that very few 

critical sites exist in the cell, indirect effects actually cause most of the damage. Free 

radicals are able to disperse throughout the cell and can react with materials of the cell 

over greater area than the original beam of radiation.

: Sometimes called reproductive death, refers to the failing ability of cell to reproduce, to act as a clone for 
a significant (more than 2,3) line of offspring.
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Production o f free radicals from water

The mechanism of indirect effects relies on the formation from water of highly energized 

molecules or atoms called free radicals. The most important free radicals3 produced by 

water radiolysis are the OH", or hydroxyl radical and the H* or atomic hydrogen radical. 

Free radicals are usually chemically highly reactive and thus seek to combine either with 

another free radical to form a stable molecule or with an ordinary molecule to form both a 

stable molecule and a less reactive free radical. Some free radicals will combine and form 

H2O2 and HO:. These compounds, while not as reactive as the original free radicals, are 

thought to be primary agents of cellular damage, since they are able to disperse 

throughout the cell and are thus more likely to react with important biological molecules. 

Damage to cells can take on various forms. If the DNA is damaged, a loss of control in 

daughter cells may result, or the ability to duplicate may be lost. Non-specific cell 

damage can result in loss of important cellular functions, production of toxic waste 

products or cell death without further reproduction.

Cell Death

We will now give an overview of the mechanisms of cell death and will discuss 

why and how these are important for radiotherapy. An understanding o f the mechanism 

of cell death is central to identify how measuring macroscopic parameters like electric 

permittivity and conductivity can be related to changes4 occurring in cells and tissue. 

Also, distinguishing between different death mechanisms triggered by radiation is vital 

for both the treatment itself and for its final outcome. A crucial question coming into 

play, on a quite controversial subject, will be: is it the DNA damage that is mainly 

responsible for cell death (or inactivation), or are there other mechanisms at the level of 

cell organelles or molecular complexes (cytoskeleton, mitochondria, ionic pumps, etc.) 

that also contribute?

Most of medicine is involved with cell death, either in preventing cell death and 

necrosis (e.g. transplants, stroke, trauma) or in causing or promoting cell death (e.g.

} A free radical is defined as any chemical structure that contains an unpaired electron.
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cancer treatment). It is important to emphasize the otherwise implicit idea, that even 

though we will continuously refer to cell we expect that organized tissue systems respond 

as predicted by cellular studies. This is, in principle, true, but a there are a number of 

local conditions able to modulate the response, some of which are not completely 

understood, including the supply of metabolic substrates (or removal of metabolic 

products), the effect of hormonal substances responsible for regulatory performance, and 

tissue physiological environment (e.g. state of oxygenation, free radical scavenger 

capacity), etc.

The concept of death evolved slowly to our current understanding, namely that 

programmed death (and we will define the term later) is an intrinsic part of the 

development of all invertebrate and vertebrate multicellular animals. It starts with the 

morphogenesis, the self organization processes that leads to formation and differentiation 

of tissues and organs- and continues with tissue homeostasis, regulation of cell numbers, 

elimination of damaged cells and defense against infections. Malfunction of this 

mechanism is an important component in the pathogenesis o f several human diseases, 

including AIDS and cancer. The death mechanism is regulated by signals provided by 

other cells, either directly, cell-to-cell contacts, or indirectly, by soluble mediators or cell 

lineage information. It should be vigorously emphasized that multicellularity seems be to 

intimately linked to the evolution of the mechanism of programmed death. With the 

exception of germs, all other cells, in a multicellular organism, are ’condemned' to live 

together and to cooperate such that the whole system remains adapted to its environment. 

The mechanism of death can be seen, in this light, as a social form of regulation of cell 

survival, through a process of ’altruistic’ suicide for the benefit of the organism as a 

whole. It is also worth mentioning that all cells from multicellular organisms or structures 

(e.g. tissue, organ) undergo programmed death5, in vivo and in vitro, despite the existence 

of adequate nutrients i f  they are deprived o f  contact. At the same time we have to 

remember that there are a number of quite different cell population kinetics, ranging from 

close, almost static populations (e.g. neurons in the central nervous system), to dividing,

4 The generic term changes should in fact be read radiation-induced changes. It basically refers to changes 
in the cell population as well as changes in the tissue morphology.
5 In a healthy human body, there are about 70 billion cells dying every day (from apoptosis). so the death of 
a cell is not something unusual [13].
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transit populations (e.g. blood cell types) In culture, a cell population under a minimal 

density threshold (and in the absence of externally added survival factors) will undergo a 

rapid induction of programmed death. An interesting connection with the conduction in 

fractal systems and the percolation limit will be made in Chapter HI. Also, the adhesion 

dependent cell-regulation through the interaction with the extracellular matrix (EM) will 

be discussed in the context of the radiation-induced denaturation of the EM.

The term programmed death is usually synonymous with apoptosis (for 

invertebrates, the term is cell deletion), and refers to the natural death associated with 

healthy tissues or organs. The other type, the accidental death, occurs as a result of a cell 

injury. In both cases, one can distinguish three phases of the cellular reaction: a prelethal 

phase (potentially reversible), the cell death and necrosis phase [13]. The term necrosis is 

sometimes used as cell death due to accident, injury or disease. We will differentiate here 

the prelethal phase from the death phase, thus using necrosis to name the changes in cells 

after death.

The two pathways to death and necrosis, oncosis and apoptosis (in more vivid 

terms these two can be called respectively cell death by murder and cell death by suicide) 

are very different in their structure, function and occurrence.. Even though fundamentally 

different, in real systems it is difficult to separate them. Often the two pathways occur in 

combination, oncosis at the center of a lesion, apoptosis at the periphery. There is no 

universal response even for a given type of injury or trigger. Instead, there are a large 

number of factors which play roles into the dominance or one or another of the cell 

responses (e.g. hypoxia6 have been shown to increase apoptosis). After an injury like 

ionizing radiation, the cell type is, for example, a factor in the type of response (note that 

there are approximately 200 types of cells in an adult human being). A graphical 

description of the differences between oncosis7 and apoptosis8 is shown in Figure 5 ..

A Defined as lack of oxygen in the tissue
7 From the Greek oncos - swelling
* The Greek name comes from apo-meaning from, and prosis-meaning a hill, and suggests leaves falling 
here and there under a tree
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Apoptosis vs. necrosis

We will examine further the specifics of the two pathways to necrosis. The suicide 

mechanism for apoptosis is under genetic control.

APOPTOSIS
ONCOSIS

? - . ! S S N

BLEBBING 4  , ,

v \  <<S»T 4 
 |  w Cell Death

BUDDING

NECROSIS

Phagocytosis
Inflamation

< w  
4

Phagocytosis 
by M acrophages 
or Nearby Cells

FIG. 5. The two pathways o f cell death leading to necrosis. It is important to notice the 
differences in morphology, e.g. cell swelling with blebbing and increased plasma 

membrane permeability, in oncosis, vs. cell shrinking with budding in apoptosis (adapted
from [14])
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The trigger, though, can have an amazing variety: an internal clock, extracellular agents 

(hormones, cytokines, etc.) or a variety of physical (ionizing radiation, hyperthermia), 

chemical or viral agents. A central component of the death-signaling pathway in many 

cells, particularly in tumor cells exposed to chemo- or radiation therapy, is the anti- 

oncogenic gene p53. This transcription factor is an interesting example of bifunctional 

protein involved in both cell proliferation and cell death. In many cell systems a primary 

trigger for P53 synthesis is DNA damage such as that caused by accumulation of reactive 

oxygen species (free radicals) or by the direct action of radiation. The generation of P539 

can be considered a necessary but not a sufficient condition for apoptosis. Many proteins 

are involved in apoptosis, the most significant one being Bcl-2. It has an antagonistic role 

to p53, blocking the physiological cell death in many mammalian cells, sometimes even 

after the action of toxic agents.

An important limitation to assess the apoptosis in vivo is the fact that it is a rapid 

mechanism that leaves only subtle traces. The timing of the apoptosis can be a fast one, 

(see Figure 6) running its course in minutes or tens of minutes after the onset, which is 

one of the reasons that it escaped undetected and unnoticed by pathologists for a long 

time10. Besides, it is not always synchronized in a cell population.

Morphologically, during apoptosis, the cell shrinks and loses normal contacts, 

and this constitutes one very important feature in the rationale for using Electrical 

Impedance Spectroscopy as a tool for assessing cells death in tissue. In fixed sequence, 

chromatin condensation, cellular budding and fragmentation and rapid phagocytosis by 

either neighboring cells or specialized phagocytes, are typical events that describe 

apoptosis. If as a results of a trigger (e.g. radiation) a significant number of cells undergo 

apoptosis in the same time frame, it is expected that that loss of contacts and the 

shrinking and fragmentation, will be translated into an decrease of conductivity at low 

frequency and a shift in the characteristic dispersion peak at intermediate frequencies.

9 The gene is written in lower case (p53) and the corresponding protein in upper case (PS3)
1(1 Dr. Marcel Bessis did the first known cinematographic recording of apoptosis in 1955.
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FIG. 6. Two frames from the 1955 time-lapse movie by Dr. Marcel Bessis; a) leukocyte 
(in vitro) at the beginning of apoptosis; b) 33 minute later, after budding, the cell virtually 

blows-up into a number of apoptotic bodies (from [14])

Changes in the parameters modeling the membrane response as well as variation 

of the extracellular space volume (an increase for apoptosis, decrease due to swelling, for 

oncosis) will also play a role into the dynamic of dielectric parameters.

The shrinking and condensation mechanism are largely unknown. A possible 

explanation for the increased density could be the accumulation of denaturated proteins, 

which in turn have been linked to the increase in the intracellular calcium. Recent 

research elucidated part of the mechanism by which cells activate enzymes called 

caspases carry out the ’dirty work’ of cell suicide. Caspases chop apart the cellular 

proteins which maintain the structural and functional integrity of the cell and carry out 

key cellular tasks like DNA repair and cell adhesion. Until recently, malignancies were 

histologically graded using cell replication and cell differentiation as indicators. It is now 

clear that increased cell replication is not the only explanation for the loss of tissue 

homeostasis in cancer: an equally important role is the disturbance of the cell death 

mechanisms. In fact it is quite intriguing that evidence shows that the apoptotic 

mechanism may never be completely inactivated; instead its threshold for activation is set
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higher, such that most oncological treatments capable of inducing apoptosis (e.g. chemo- 

and radiotherapy) become ineffective. »

For all these reasons, there is an increased interest in searching fo r  a simple and 

effective method o f specific identification and quantification o f  cell proliferation and 

deletion that can be used routinely in oncological patients.

Recently, the capacity of malignant cells to escape the effects of chemotherapy, 

radiation (in this case, radiosensitivity) or other hormone treatment, has been related to 

their capacity o f escaping apoptosis. As far as radiation is concerned, despite the large 

variations among malignancies, there is good evidence that there is a strong correlation 

between radio-curability and the magnitude of apoptotic response. Depending on the 

dose, radiation can induce apoptosis or oncosis. At small to moderate doses, apoptosis is 

induced in both normal tissue and malignant neoplasm. The way in which radiation 

triggers apoptosis is not completely understood, but it is believed to be related to the 

damage inflicted at the level of DNA.

Check point for
unreplicated or damaged Dl Check point for 

chromosome 
misalignment

Check point for 
damaged DNA

FIG. 7. Few checkpoints function in order to ensure that complete and correct genome is 
transmitted. The proliferation o f most cells is regulated primarily in G| but some cell 

cycles are controlled in G2 . In mammalian cells, arrest in G[ is mediated by p53, which is 
rapidly induced in response to DNA damage. Mutations in p53 are very frequent in 

human cancers, thus contributing to genome instability and cancer development.
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When DNA is damaged, the cell is arrested at Gi phase to allow extra time for the repair 

of DNA (as seen in Figure 7).

Ischemic cell death - oncosis - is characterized by swelling (this explains how 

Von Recklinghausen coined the term oncosis about 100 years ago). This type of early 

response follows a variety of injuries (heat, toxins, ischemia, etc.) applied in-vivo or in- 

vitro. The main difference between oncosis and apoptosis seems to be whether or not the 

injury primarily (or secondarily) interferes with ATP synthesis and failure of the ionic 

pumps in the plasma membrane ([Na+] regulation). The sequence of functional and 

biochemical changes take place quickly after injury (minutes). The oncotic death, defined 

functionally by the point of no return, occurs long before necrosis and it is not detectable 

histologically. In rat liver for example, it takes about 120-150 min to reach the point o f no 

return; the swelling however takes place for 6 to 7 hours, and then it loses water (sign of 

massive membrane breakage) and shrinks. The cells die early in the swelling process. 

ATP is typically reduced, in some cases as ischemia of kidney in vivo, quickly becomes 

non measurable. A direct consequence is loss of control of ions and water regulation. The 

timing of this stage depends on the type of injury and whether the plasma membrane 

permeability is affected. Increased concentrations of Na+, C1‘ and HiO in the cell are 

accompanied by decreased levels of K+. In parallel, [ C a 2+]j increases due to increase entry 

from the extracellular space; the increase can be from 100 nM in most cells to mM levels. 

There are also enzymes leaking11 from the cell even in the case of relatively mild, 

reversible injury.

A number of studies [15, 16, 17, 18] have put in evidence a mechanism of 

radiation-induced damage at the level of the level of plasma membrane. The currently 

accepted explanation for radiation-induced membrane damage is lipid and protein 

peroxidation by highly reactive free radicals. This leads to increased cell membrane 

permeability, which results in metabolic exhaustion, an increased production of reactive 

oxygen intermediates and the onset of necrosis. It was also recently recognized that the

11 These are the "liver enzymes", "cardiac enzymes", etc.. that a lab measures to determine the presence and 
extent of injury in the clinical sening. Skeletal muscle enzymes rise after a workout, and liver enzymes 
after a beer party, but in neither case is there microscopic evidence of cell death.
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cell membrane may be an important target for at least one pathway of radiation-induced 

apoptosis [19].

It is generally accepted that the type of prelethal phase (apoptosis or oncosis) 

following radiation injury has dose dependence, in that lipid peroxidation-mediated 

permeabilization of cell membranes is associated with intense ionizing irradiation. In 

[16], Canaday et al., showed with irradiated postmitotic muscle cells that there is a lag 

time between irradiation and the onset of membrane permeability changes. The lag time 

is between 5-35 minutes, also with a dose dependency. The model they used considers 

radiation-induced poration followed by diffusional coalescence; a breakdown of 

membrane integrity occurs only when there are enough local pores, which coalesce into 

one of critical size. The process seems to depend both on dose and temperature. It is also 

interesting to notice that the existence of the lag time is a feature encountered also in the 

TRAP (total peroxyl radical-trapping potential) assay [20]. Antioxidants prevent 

modification of low density lipoprotein (LDL) by free radicals. The TRAP assay is meant 

to quantify the capacity of human serum to resist attacks by free radicals, by measuring 

the length of time that a subject’s serum is able to resist artificially induced peroxidation. 

In this case, the lag time is related to the concentration of antioxidants in the sample.

To review the important information in this chapter, we have to point out again 

that there are two pathways towards cellular death: apoptosis and oncosis. They are very 

much different in the sequence of changes occurring after irradiation. The nature and 

chronology of these changes are such that they evolve fast thus rendering 

histopathological investigations of little help. Giving the widespread use of the radiation 

treatment, there is an increased interest in searching fo r  a simple and effective method o f  

specific identification and quantification o f  cell proliferation and deletion that can be 

used routinely in oncological patients. In the experimental section we present evidence 

that Electrical Impedance Spectroscopy, has the potential o f monitoring in real time, the 

subtle changes that can lead to the recognition of the two pathways to cellular death. The 

advantage can be an increased awareness of the response of the organism to radiation 

therapy before necrosis is installed and late changes become obvious; the feedback 

provided during the treatment can lead to the customization of the dose delivery, in terms 

of both magnitude and timing. Further in vivo studies are needed, to correlate the very
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early changes we detected in the parameters modeling the dielectric response following 

irradiation, with evidence for apoptosis or necrosis and morphological changes.
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CHAPTER ffl 

DIELECTRIC PROPERTIES OF MATTER

The aim of this chapter is to present the main tools used in dielectric spectroscopy in 

order to assign dielectric dispersion to biological structures and to identify the processes 

taking place in these structures. Historically, Fricke [21] was the first one, in 1925, to 

show by impedance measurements that cells are surrounded by a thin, insulating 

membrane.

Dielectric properties, a practical definition

The electrical properties, conductivity o  and permittivity e, of a material, can be 

determined by placing the material between the plates of a capacitor and measuring its 

resistance R and capacitance C:

/? = - - ,  and C = ̂ .  (14)
cr A d

The conductivity a(o))=(TDC +0)£i,£"(q)) (measured in Q '/m or S/m in SI) measures

the easiness with which free charge carriers can move through the material under the 

influence of the external applied field, thus being the proportionality factor between the 

electric field and electric current. The permittivity e (measured in units of Eo) is, 

following a similar reasoning, the proportionality factor between the electric field and 

localized charges, reflecting the extent at which the charge distributions can be distorted 

by polarization. For non-polar materials, the increase in the capacitance results from the 

polarization of the molecular structure, in the form of atomic and electronic polarization. 

In the case of the polar materials, the component molecules posses a permanent dipole 

moment, and their polarization response will have an orientational polarization 

component in addition to the polarizations already mentioned for non-polar materials.

If one now applies an electric field with increased frequency E  = Eoe'°*, there will be a 

phase shift between the applied field E  and polarization. The dielectric displacement D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 8

can thus be written D = D0e',M' S). The experimentally accessible quantity is e, defined as 

the ratio D /E , which is therefore complex if the phase is non-zero. Anisotropic systems 

would normally require a tensor for e, but for biological materials, this can be safely 

considered a complex scalar £ = |f |e ‘',y - e ' - i e " .  Figure 8 illustrates a typical frequency

dependence of the complex permittivity £=£-ie" for a pure polar liquid. The frequency 

scale as well as the characteristic dispersion frequency is arbitrary. The consequent 

reduction of the permittivity and the increase in absorbed energy is referred to as 

dispersion (or dielectric relaxation). As we expect the ’slowest’ one is the orientational or 

dipolar polarization. Depending whether the molecules are bulky macromolecules like 

DNA or smaller molecules, like the water molecule, the fall-off o f the orientational 

polarization can occur in a frequency range from 0.01 Hz to i0 H Hz. The atomic and 

electronic dispersions occur in IR (infrared, about 10U Hz) respectively visible, UV 

(>1015 Hz). For dielectric studies, the dipolar relaxation is interesting because 

information about the dipoles and their environment is contained in both the frequency 

and the shape of the dielectric dispersion.

Most molecules of biological interest possess an electric dipole, which in general 

gives rise to a high dielectric constant and a well-defined dispersion region [22]. The 

magnitude of the dipole moment |X depends on the size of the molecule and on its 

distribution of charge. A convenient unit for p. is the Debye (D), representing a SI value 

of 3.33-10'30 Cm; an electron e displaced for one A (10 l° m) would have a dipole 

moment of 4.8 D. Thus, a water molecule has approximately 2D, hemoglobin (68000- 

molecular weight) several hundred D, and DNA (molecular weight 2-3-106) roughly 105 

D.
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FIG. 8. The frequency dependence of the complex permittivity e=e-ie" for a pure polar
liquid

As shown, the dielectric constant £’ falls from a high value e* (the static dielectric 

constant) to £„ (the high frequency dielectric constant) as the frequency increases through 

the dispersion region. When dispersion occurs there is a phase lag between the motion of 

the dipoles and the applied Held, with a consequent loss of energy. The lower curve 

shows the variation of the fractional energy absorption per cycle e", the frequency 

corresponding to the maximum absorption being termed the relaxation frequency f s. 

Corresponding to this parameter is a relaxation wavelength Xs = c/nfs and a relaxation

time r, = \j2jcfs .

These three quantities Eg, e» and t  as well as the shape o f the dispersion curve are 

related to various molecular parameters, so a study of the dielectric behavior of a 

substance can be used to provide information at the molecular level. In the context of the 

large £ values, typically encountered in biological solutions or tissue structures 

characterizing the low frequency dispersion, we should note that these high values of the 

dielectric constant, do not come from the existence o f permanent dipoles -  there are other 

polarization mechanisms that can give rise to high dielectric constants but have nothing 

to do with dipole rotation (e.g. Maxwell-Wagner effect, discussed later).
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The Debye Dispersion

The simplest case is a single dispersion region, a relaxation process characterized 

by a single relaxation time associated with viscous damping of one species of polar 

molecules as they try to align with the applied field, which conforms to the Debye

equations [23]:

£v  f o o  ,  f __  f y  £ 0 0

7 T ’
£  = £ o * + -

1+ ( * * }
2

1+ f M '
U J U  J

which are derived from

£ = £ '- / £ '  = £*,+■ £s
t  1 ^

l+ i
v * /

Expressing e’ and e" explicitly as functions of w:

(15)

(16)

£  =  £ «  + £s ~£°°
OO ' ■> 1 ♦

l + a r r

£ „ = {£s -£ °o) cot

l+<y*r
(17)

and eliminating G/r between them, we obtain:

£ — 0 0 )
+ ( 0  = (18)

which represents the basis for a widely used representation o f the dielectric constants £’ 

and e", the so-called Cole-Cole plot, a semicircle with its center on the e’ axis if the 

Debye equation are obeyed. When deviations from the pure Debye behavior were 

measured, the most straightforward way of tweaking the Debye function was to invoke a 

spread of the relaxation times.
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11e
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► £'

FIG. 9. Cole-Cole plot (£” vs. s ’) of complex permittivity.

Cole-Cole dispersion

Several distribution functions are available. Cole and Cole [24, 25] have deduced the 

following phenomenological equation, introducing an empirical coefficient a  in Eq. (16):

£ =£ —1£ =£« ,+ -

1 +
( X 'S As

1 - a ' (19)

where a e  [0,1] and is a measure of the spread of the relaxation times. 

Figure 10 shows the variation of the dispersion shape as a function of a:
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FIG. 10. Variation of the dispersion and absorption plots for values of ote[0,l].

In the Cole-Cole plot shown in Fig. 11, the semicircle become depressed as a  increases:

£"

q  = 0

a  = 0.4

FIG. 11. The depressed semicircular behavior is characteristic for many biological
materials.

Lets consider now the type of relation that one would expect between dielectric 

properties and molecular structure.

The static dielectric constant (£*) is dependent upon the molecular dipole moment 

(|i) and the type of short-range structure present. For an ideal system such as a polar gas
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or a very dilute solution of polar molecules in a non-polar solvent, the polarization is 

given by the Debye equation [23]:

p  _  £ t f t
£ ,+ 2  /) 3

■> ^
ar+ -^—

3 kT
(20)

with P-molar polarization, M  the molecular weight in grams, p  the density and a  the 

molecular polarizability or induced moment per molecule per unit field. It can be seen 

that the polarization can be split up into 2 parts corresponding to induced dipoles and

permanent dipoles, the former being due to atomic and electronic displacement.

Unfortunately, this equation is based on assumptions (concerning intermolecular forces) 

that do not held in the case of biological liquids. When formulating his equation, Debye 

[26] accepted the Clausius-Mossotti expression for the electric field acting on a given 

molecule in a dielectric

£  + 2
Ei = ~ ^ ~ E ' (21)

where E  is the external field. Later Onsager [27] showed that the relation should be 

replaced by

E r - ^ - E ,  (22)

from which he deduced the following equation for the dipole moment in terms of e*:

4 * '  * ,( " 2 + 2)-

with rt- the refractive index in far infrared, and s the number of molecules per ml. 

Onsager’s theory [27] shows that the dominant term in the expression for dielectric 

constant should be the square of the dipole moment of the molecule in the gaseous state 

(|i). However, the equation breaks-down with hydroxylic liquids which precludes its use 

for biological molecules, where hydrogen bonds play such an important role. Various
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attempts were made to modify Onsager’s law, the most well known being due to 

Kirkwood [28]:

(ci - 1)(2£,-H) = 4 ^  
9f, 3

i A
CC+ML

3kT
(24)

The factor g is called the correlation parameter and equals one for a molecule undergoing 

free rotation. The departure from unity is a measure of the degree of intermolecular 

attraction and its value must be deduced from a model for the liquid structure. For the 

associated liquids, for a given set of dielectric data it may be possible to envisage several 

alternative molecular models that fit the facts equally well.

Non-Debye mechanisms

The above examples were restricted to small inorganic molecules but the same kind of 

ideas can be extended to molecules of biological interest. It should not be assumed, 

however, that a large e* necessarily implies the existence of permanent dipoles; other 

mechanisms of polarization exist which give rise to high dielectric constants but which 

have nothing to do with dipole rotation. An example is the Maxwell-Wagner effect which 

will be discussed in more detail in the next section. In the cluster model of relaxation (for 

both bulk and barrier properties), the Maxwell-Wagner response represents a limiting 

case, only applicable when the series elements are perfect, non-dispersive capacitors and 

resistors.

A broad classification of dispersions can be made according to the dominant 

physical processes:

• Debye - the frequency dependence is due to the orientation processes of electric 

dipoles associated to molecules or other structures in external electric fields;

• Maxwell-Wagner - its frequency dependence is due to the heterogeneous structure 

and hierarchical organization of tissues.

Another appropriate classification would have been Debye and non-Debye relaxation 

processes. The reason is that there is a wealth o f phenomena in the physics of condensed
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matter dealing with a \iniversal’ non-Debye relaxation, basically a non-exponential decay 

of the depolarization current (for dielectrics) following the removal of the polarizing 

field. While in the Debye mechanism, the time domain response function is of the type 

vF (r)I e~'/r , the typical non-Debye relaxation is characterized [29] by the response 

function H/(z) □ t~n, leading to a susceptibility ^ ’(0 )0  £"(*») C Q)'a+l. In general, the 

causes for the a non-Debye behavior can be considered due to:

1. An inhomogeneous mechanism: the distribution of relaxation times, probably the 

oldest and most phenomenological explanation. The individual dipoles relax 

exponential (Debye) but the relaxation time is different from dipole to dipole due 

to spatial inhomogeneities. Thus the result of the non-Debye behavior is to be 

attributed to superposition.

2. A homogeneous mechanism based on defect-diffusion controlled relaxation. The 

elementary dipole, re-orienting under the usual Debye-like rotational diffusion, 

relaxes completely after an encounter with a defect. In its essence a diffusive- 

reactive process, it is also highly dimensionality dependent.

Another possible classification, particular helpful for our applications, uses as criteria the 

frequency at which these dispersions occur. Schwan has shown [30] that most biological 

materials exhibit 3 dispersion regions (ot, P and y, seen in Figure 12), which occurs at Hz, 

kHz-MHz and GHz frequencies, respectively. A fourth one, 8, occurring between the P 

and y regions is acknowledged for a number of systems {e.g. protein solutions) and some 

authors discuss about sub-ranges of P: Pi, Pi. Even though the original idea was to assign 

these ranges to certain polarization mechanisms, due to a number o f factors {e.g. 

distribution of molecule or cell sizes) there are no clearly defined boundaries.
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FIG. 12. Typical dielectric spectrum for tissues (adapted from [30]).

The a  dispersion is believed to occur from mHz to kHz frequencies. Despite of the 

apparent accessibility, it is very difficult to model this region because of the many 

different processes playing a role: electrode polarization, particle electrophoresis, 

electrolytic processes, hydrodynamic relaxations of the Held induced convections, and the 

impossibility of isolate the different contributions. Schwan initially suggested [31] the 

responsible with the a  dispersion is the polarization of counterions near the cells surface 

(see reference to the counterion polarization). In muscle cells, where the low frequency 

dispersion is especially strong and orientational dependent, another source could be the 

polarization of the sarcotubular12 system. The a  dispersion is a very striking feature in the 

permittivity data (for tissues £r can reach 106-107). Due to the strong ionic conductivity of 

the tissue electrolyte, the a  dispersion is not present in the conductivity, the results being 

that tissue conductivity at these frequencies exhibits an almost entirely resistive behavior 

with very small contributions from displacement currents.

12 A complex system of membranes, vesicles and tubules that permeates the cytoplasm of a muscle cell 
(sarcoplasm) and connects to the exterior of the cell
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In the frequency range corresponding to the (3 dispersion, the relaxation is 

essentially due to the capacitive charging of cell membranes, its origin lying in the 

structure of the cell in which an interface - the plasma membrane - separates two 

conducting media. When the frequency increases, the capacitive reactance decreases, 

which in turn determine an increase current in the intracellular space. The increase in 

conductivity is also accompanied by a decrease of the permittivity, since at high 

frequency the cell walls don’t have the time to fully charge during a cycle. The cell 

aggregate composing the tissue is clearly an heterogeneous medium in which the 

relaxation is based on Maxwell-Wagner interfacial polarization. Towards higher 

frequencies, also contributing is the dipolar reorientation of the proteins and cell 

organelles. There is a strong overall dependence of the P dispersion to the physical 

integrity of the membranes.

The high frequency dispersion (UHF and microwave) is due to the dielectric 

relaxation of water. Pure water relaxes at about 20 GHz at 25 °C and has an (almost) pure 

Debye behavior. For tissue with high water content, at these frequencies, the conductivity 

is due to both dipolar loss and to ionic conduction.

Interfacial Polarization. The Maxwell-Wagner Theory

The permanent electric dipole moment (when it exists) of a number of biological 

polymers cannot explain the high polarization of these molecules, especially at low 

frequencies. A theory which is based on the concept of interfacial polarization of 

inhomogeneous materials has been developed in order to explain the unusual dielectric 

properties of these substances.

In this section we will discuss the classical Maxwell-Wagner polarization 

mechanism. Later, it will be shown that from the more general standpoint of transport 

across fractal interfaces (percolation, cluster, etc.). Maxwell-Wagner theory represents in 

fact a limiting case, only applicable when the series elements are perfect, non-dispersive 

capacitors and resistors.

Many biological materials do not have a permanent electric dipole moment, yet 

when dissolved or suspended in aqueous media, they exhibit a dielectric constant which
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is far larger than that of the solvent. This strange behavior seems not to be only related to 

biological systems, but also to simpler systems (e.g. suspension of latex or polystyrene 

particles) which do not have a permanent dipole moment but exhibit an exceedingly large 

dielectric constant and an anomalous dispersion. These observations cannot be explained 

by the theory of polar molecules, the so-called Debye behavior. The dielectric analysis of 

colloids and suspensions in the frequency range corresponding to the Maxwell-Wagner 

polarization [32] can bring information about the size and shape of the particles, the 

colloid-solvent interface and the ions distribution around the particle surface.

How can we describe an inhomogeneous dielectric material? First of all, these 

systems must have discrete domains (barriers, layers), separating regions with different 

dielectric constants and/or conductivities. In the case of the suspension of particles, for 

example, there is a sharp boundary at their surface. The solvent phase can be considered a 

dielectric continuum.

A simple barrier model (for wavelengths much larger than the size of the 

dimensions of the capacitor) is a system with two slabs having different dielectric 

properties in contact with each other, as shown in Figure 13.

a b

FIG. 13. A leaky condenser - the simplest model for interfacial polarization.

In this figure, e t, a t, e2, a 2 are the dielectric constants and conductivities o f these slabs 

respectively. The equivalent circuit o f this system is shown in Fig. 13. Each slab is 

represented by a leaky condenser (a capacitor and resistor are connected in parallel). The
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measured impedance of such a system at a given frequency is resolved into equivalent 

parallel capacitance Cp and resistance Rp to evaluate the dielectric constant from the 

following equations:

C l
£ " = — -— , (25)

C coC Ri> p

where C„ is the geometrical capacitance of the sample.

Assuming no true charges on the interface and an isotropic dielectric, the continuity of D

requires:

£,Ei =£1E1- (26)

Thus, the current densities at the interface are:

A  = ̂ L = ^ . ,  (27)
j 2

so, whenever (7,£: <r:f , the interface will be charged at a rate proportional with

y, -  y , . If the unlikely condition 2 = <T,£, is satisfied, no Maxwell-Wagner effect is 

observed. The equivalent permittivity e and conductivity a  o f the system can be found by 

regarding the two capacitors in series:

(28)
(T (T\ G-i

£ + —  £ i+ —  —
ico iO) '  iO)

To further simplify the formulae, we will consider di=d2=d and will seek the complex 

permittivity of the Debye form:

(29)
I+ ICOT

By identification, the following formulae are obtained:
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4/r(<r, + tf2) ’
£ ,+ g 2 (30)

Considering £i = 3, £ 2  = 95, (Ji = I O'7 S/m and Gi = 0.1..10'9 S/m, one can obtain a 

maximum loss factor £m = l /2 ( fJ -£ _ )  rising from IO'5 at a frequency/, = \f2 n t of 6

Hz to almost 400 at 10'2 Hz. Even though we can imitate the Debye expression, it’s 

obvious that the meaning of the parameters involved has nothing to do with the dipolar 

moment and that the apparent dielectric relaxation obtained is an interface phenomena.

The two slab model can seldom be of use in modeling real systems, so our next 

step will be to find the dielectric properties of a dilute mixture of non-interacting 

spherical particles. The well-known mixture equation was derived by Maxwell (1892):

solvent and suspended particles respectively, and p  is the volume fraction of the 

particles. Maxwell originally derived the equation above for real dielectric constants of 

the two media. Solving for £*, we obtain:

£  - £  £  - £ - ,
T~.-----~=P2£, +£  2f, +£,

(31)

where £* is the complex permittivity of the mixture, the indices 1 and 2 are used for

(32)

For small p  the previous relation reduces to:

(33)
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The difference between the exact formula and the approximation used for small p  can be 

seen in the Figure 14.

0 04 0802
I tiiume JruLtHM p

FIG. l4.The exact e* is physically correct, while the approximation can only be used for p 
< 0.2. In this example £t = 78.5 and £2 = 3.0

The generalization of Maxwell’s theory, written for real dielectric constants, is due to

Wagner [33], who essentially replaced e '  with e + 4 /r—  and obtained a Debye-like
im

expression:

in which

\+ im

l+ 3 p g2-g ,
2 ^ + f ,

{ £ & -£ & )*

(toy+ a-,)' (2£x+£2)

r _  2g.+*2
4 ^ (2 o-,+(T2) ’

(34)

(35)
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are in fact approximations of the exact formulae for small p.

At this point it is interesting to notice that the frequency of the maximum dielectric loss 

f m = \ f2 m  is independent (in the small p  approximation, but it doesn't vary significantly

in the exact formulation) of the concentration of the dispersed components, which 

represents an important feature of the interfacial polarisation in heterogeneous systems.

The Maxwell-Wagner theory fo r suspensions o f ellipsoidal particles

Even though a dilute suspension of spherical particles seems more suitable to model real 

systems, biological cells as well as the polyions have complex geometries that cannot be 

approximate by spheres. Since many structures are elongated or disc-shaped, the next 

best choice seems to be an ellipsoid (Figure 15). The following ellipsoidal model can be

used:

FIG. 15. Model for the ellipsoidal particles

and the field is considered to be applied along the x axis. The idea of the calculus is the 

same as for the sphere: one estimates the potential of one large ellipsoid with an 

(effective) dielectric constant e’ in a point P at a distance r from the center. On the other 

hand, in the same point, the potential due to N small particles is evaluated by 

superposition. The two potentials, even though calculated by different methods, have to 

be the same, and this is the relation leading to £*. With the notation: p  =  N v/V  (v- 

volume of particle, N-no. of particles and V-volume of the large ellipsoid), n - A n / f  

and
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r d£ J (a 2 + 4)(b2 + £ )(c ' +£)

 ^  -  (36)

For simplicity, medium I will be considered a pure insulator £,’ = e, and medium 2 with

non-zero conductivity el = £, + ~ <Tl-. The following components of e are obtained:id)

A£ , „ e . t e - m
£ = £ _ + £ ,-— :— — and £ = —

l+ (ry r) '
(37)

where

em=£.
( n - l ) £ ,+ £ .

(38)

*  n ' £ \Af = £s -£ _  = P ------------ 1
( n - l ) f ,  +£, ’

(39)

and

T _ { n - l ) £ l +e2

4/nx,
(40)

Concentrated suspensions

The Maxwell-Wagner theory was developed with the assumption of small concentration 

of suspending particles in solution (which in turn implies non-interacting particles). It 

was found later that it can be applied for high concentration, even though rigorously, it is 

true only for small volume fractions p. Hanai [34] extended Maxwell’s theory for high 

volume fractions. The relation between £*-the dispersion of the suspension, and £*,£j-  

the dispersion of the solvent respectively the suspended particle is:

£  - £ ,  

•  •£, -£,
= 1 ~ p , (41)
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which leads to solving a third degree equation in £*:

*3 _  •  m 2 _  *2
£ - 3 f ,£  + 3f, +

/

(42)

V /

The frequency dependency is implicit, given that all the complex permitivities depend on

0):

Until now we discussed about mixtures (in fact colloids or suspensions) in which the 

suspended particles were characterized by only one set of dielectric parameters: the 

electric permittivity £ and conductivity a . An important assumption was that the particles 

are not in contact with each other and are not forming clusters leading to conductive 

pathways between electrodes. A phenomenon which was not taken into consideration 

and which is of great importance in real cases (biological macromolecules or cells) is 

surface conductivity. Most o f these systems are electrically charged (as a result of 

ionized surface chemical groups or adsorbed ions). The surface charges will attract 

counter-ions, forming an electrical double layer. Surrounding the particle with its double 

layer is the bulk volume of the electrolytic solution. The model is a particle with a thin 

conductive layer, shown in Figure 16.

The Laplace equation V 2*P = 0 has to be solved for each domain (1,2 and 3) 

along with the boundary conditions at r=/?/ and r=R. The exact solution is difficult to 

obtain and unsuitable for practical applications. With few simplifying assumptions:

A m
£  = £ +  .

id)
(43)

Particles with surface conductivity

the effective values for the conductivity and permittivity of the particle are:
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<7 = 0 ,3 + 2 </<7 , / f l  and £ = f 3+ 2  d e ^ jR .

FIG. 16. Model for the double layered particle

Using the Maxwell-Wagner equations for mixtures of spherical particles, one obtains:

I d e j R
£_ =£, l+ 3 p

3e3+ 2 d e j R j
(44)

(f , ( t r  + 2 d a J R ) - ( e ,  +  2deJR )cr, )2
A£ = 9  21 J J  } , (45)

(3rr3 + 2 d a jR ) ‘ (3e3+ 2<fc2/fl)

f _  2£3 +g, + 2d£2/R  
4;r(2<x3 +«7, +2d<rz/ R ) '

In the mixture theory for the shell model, this should lead to two dispersion regions, but 

because of the large interval between them (the second is to be found at very high 

frequencies), it is very difficult to put both of them in evidence.
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Counterion polarization

As we already discussed, the real particles, immersed in electrolyte, are surrounded by a 

cloud of counterions. The distribution of these charges is in general such that it reaches a 

maximum at the Debye length (A d ) and then decreases with distance. The surface charge 

arise basically from the different affinities for electrons of the phases in contact, but a 

number of other mechanisms can play a role. For biological particles, the surface charge 

is determined mainly by the adsorption of ionizable chemicals. As a result, the 

electrostatic potential created by the surface charges will attract ions of opposite charge 

(counter-ions) and repel like ions (co-ions). When an external field is applied, the 

counterion cloud is distorted, the center of positive and negative charges gets shifted and 

causes an apparent (or induced) dipole moment, much larger than the intrinsic one. 

Within the double layer, two motions are possible: one radial the other tangential.

Assuming that n0 represents the equilibrium volume density of ions in the 

electrolyte and z the valence of the counterion, the volume density at some distance x , 

normal to the surface, will be:

n* = n„ exp (-z*eV (x)/kT ), (47)

and similarly for the counterions

n = na exp(-z"e V (x ) /k T ) , (48)

we can see immediately that at any x, n*n~ =n]

Considering z+ = z ' = z t h e  charge density p(x) becomes:

p (x )  = e(z*n* - z~n ) = zena(exp (-zeV {x )/kT )-exp (zeV (x )/kT )) , (49)

and the Poisson equation
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W _  p(x)
(50)

dx2 eoe  '

with the boundary conditions

V ( x ^ 0 )  = Vo, 

V (.r-»°°)= 0 , (51)

w ill give

K(r) _ 2kT  lnf  l+X exp(-x /^D) '
ze l-y e x p (-r /A D) J’ (52)

w ith

cxp(zeVa/2 k T ) - l
cxp (zeV j2 kT )+ l'

(53)

and

, being the Debye (screening) length.

There are in fact a number of theories taking into account, with different degrees of 

complexity, the structure of the double layer and the motion of ions in its proximity. The 

double layer invoked here is involved in surface phenomena related to charged cells in an 

electrolyte. Equally important, surface phenomena occur at the interfaces between 

electrodes (normally a metal) used to impose an external field on a sample, and the 

electrolyte in which that sample is usually immersed. Reciprocally, many of the theories 

aim to explain the "electrode effects" can be as well used to explain phenomena in 

membrane and glycocalyx13.

13 Glycocalyx - carbohydrate layer, covering the extracellular portion of the plasma membrane. Serves for 
both protection and as collection of markers for a variety of cell-cell interactions.
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FIG. 17. Double layer structure at the electrode-electrolyte interface.

The Stem layer, shown in the Figure 17 as the one adjacent to the electrode, is a 

monolayer formed by the counter-ions adjacent to the charged surface. In the diffuse GC 

layer, the ions are still mobile and can participate to the thermal motion. These structures 

are modeled using ladder networks of capacitors, resistors and Constant Phase Angle 

(CPA) elements.

But how is, in fact, the surface conductivity and the counterion polarization 

modifying the dielectric response o f the system? Two notable theories were developed, 

by OTConski [35] and Schwartz [36]. The ideas of a hopping mechanism of conduction 

of the counterions along the particle surface and the reestablishment o f the original 

surface charge distribution under the influence of diffusion, lead Schwartz to a diffusion 

limited relaxation time x:

r = — = —- — , (54)
2D
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where r  is the particle radius, n eff = fioe 'E/kT, the effective ionic mobility, and E  is the

potential energy barrier created by the overlapping of the coulomb wells of the surface 

charges. A pictorial is shown in the Figure 18, below: the formation of potential wells 

(a), the external field activated hopping motion of the counter-ions along the charged 

surface (b) and the polarization resulted from the net displacement of the counter-ions 

(c).

FIG. 18. Polarization by hopping activated surface conductivity (adapted from [32]). a) 
counterions in potential wells on the surface of a particle; b) when a field is imposed, the 

counterions can be activated and a tangential hopping motion can lead to surface 
conductivity; c) shows the polarization of the counterions determined by their net 

displacement under the effect of the externally applied field.

The polarizable counterion layer also adds a frequency dependent dielectric increment

Ae, given by:

l+ ir n  kT

with (To the surface charge density in the absence of the electric field. For an arbitrary 

volume fraction p, Ae becomes:
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t e = l  **J!- , 2 £ L ,  ,56)
4(l+/>/2) kT

We can see that the dielectric increment is proportional with r, while the relaxation time 

is proportional with r2.

Low Frequency Dispersion

For conducting samples, and biological materials in aqueous electrolytes fall into this 

category, low frequency dielectric dispersions are considered arising from ionic 

conduction effects. A numerical simulation o f such effect is shown in Figure 19. The real 

part o f  e is not influenced by an increase of conductivity. The parameters chosen for 

simulation are: 1-a = 0.962, f = 10'2-108 Hz, fc = 1kHz, £«. = 4, Ae = 5.7-IO4 and the 

conductivity a  was varied from 10 to 200 Sm '1 in 20 steps.

£ (< y )= c  +
Ae

(57)

2 5

0.5

i i
to to toto to to

FIG. 19. Variation of e" with the frequency ox Shown is the a  dispersion and at very low 
frequencies the Q dispersions. The effect o f the static conductivity is shown in the

interval 70-1400S/m
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Pethig [32] and earlier Onsager, in his Nobel prize lecture [37] pointed out that the Q. 

dispersion is due to proton conduction processes. It was knew that Q is associated with 

the generation and accumulation of ions at the sample-electrodes interface.

The low frequency dispersion (LFD) domain in general is still under debate, but a 

majority of researchers believe that a  has an underlying mechanism fundamentally 

different from (3, and it is associated with the charge hopping between localized sites or 

clusters, rather than orientational relaxation of some permanent dipoles or more simply, 

the interfacial Maxwell-Wagner effect. More than that, the a  dispersion, which depends 

on the static conductivity, might also be protonic in nature.

In the study of conduction in disordered systems and LFD in general, one of the 

very useful model is the so-called percolation model. In a percolation model, the 

conductivity arises from long-range percolation of the charges along pathways (which are 

at the protein surface level and involve the displacement of protons between ionizable 

sidegroups of the protein) that connect the localized clusters.

The fractal interpretation of the dielectric response, especially for tissues, initially 

pioneered by Hill [38] and Dissado [39] is now more and more gaining terrain. The 

principal idea brought into play by the fractal system proponents is that organization of 

the tissues is far from Schwan’s mixture model - a suspension of spherical cells in a 

aqueous solution. In the real tissue, the cells are interconnected and connected to the 

extracellular matrix in an intricate network. The cells are not spherical and usually their 

shape fluctuates slowly. In this context, and emphasizing that is the structural 

organization of the cells within a tissue that makes possible the biological function at that 

level, one can imagine that a stochastic fractal structure can be a more realistic model. 

This structure is expected to be evidenced especially in the a  dispersion, where the 

current travels outside of the cells, ’exploring’the network of interconnections.

It was identified [39, 40] that for these systems, both €  and £" vary with a fractional 

power of the frequency (see Figure 20): e \o S ) ^ e '\o S ) ^ o f~x, and consequently, the 

impedance depends as Z(at)« (id) ) '" .
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In an equivalent circuit, that will involve using a CPE (constant phase angle 

element), with the exponent n containing all the information about the structure. This 

type of response can be mistaken with the onset of the d.c. conduction (ry-»0) for which 

e '((0 ) constant and cr/ry. With a similar low frequency behavior, the Maxwell- 

Wagner interfacial polarization can be distinguished by the dependency of tan 8 of 0) or 

in terms of permittivity, e ' x  0)~~ and c f x.

E'(CO)

,n-l

log (frequency)

FIG. 20. Graphical representation of e’ and e" dependence of frequency to, in LFD 
regime, based on power law behavior expected in fractal structures.

A large number of systems are known to exhibit this frequency dependence, among them 

being wetted proteins, hemoglobin, humid sand, porous ceramics and polymers.

Anyway, examining from this perspective our blood samples (see Fig. 21), it is 

quite clear that what we have observed in the low frequency end of the spectrum are ionic 

conductivity effects. Returning to fractal systems lets see what are their important 

features and how we can use them to better model the dielectric properties at low 

frequencies. Fractal geometry, in very broad terms, is a generalization of the Euclidian 

geometry, which adds the concept of non-integral dimension. Complexity and scaling are 

intimately related, so in an intuitive manner, the fractal dimension d  is a quantifier of
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complexity measuring the rate of addition of structural detail when the magnification is 

increased.

10*10* to*
ftQQjencypfe)

FIG. 21. Ionic conduction effect in blood samples at low frequency. Experimental points 
were collected only down to f =0.05 Hz and then extended to 10 Hz by Fitting with the

model.

The idea of using fractals in these studies is twofold. On one hand, it refers to the 

electrode-electrolyte interface (the transport across such an interface and its frequency 

response) and on the other hand it refers to the material under investigation: the 

biological tissue. One of the well known methods of reducing the polarization at low 

frequencies is to use to so-called black platinum electrodes, which because of their 

porous structure of the superficial layer (deposed by electrolysis) have an increased 

effective area, a consequently reduced current density and polarization. During this study 

we used Ft, black Pt and some electrodes made o f carbon (conductive) aerogel, material 

that offers a tremendous effective area per unit of mass. Whether designed as fractal or 

not, it is believed that electrodes in general can be treated as such (see the Constant Phase
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Angle Conjecture). A unitary view of a fractal interpretation of our results in given in the 

last chapter.

Cells. An electrochemical prospective

Biological tissues, with the fields of 106-107 V/m across cell membranes, 

networked through gap and tight junctions and connected to the extracellular matrix, are 

probably obvious examples of complex and active systems in which linearity represents 

only an approximation. A very interesting approach to linearity at macroscopic scale vs. 

non-linearity and asymmetry at the level o f microscopic constituents in biological tissue, 

is presented in [41]. The idea is that the effect of the local non-linearity is ’smeared-out’ 

by the randomness of the interconnections of the constituents in the network, making 

possible the characterization of the macroscopic system by means of an effective 

conductivity and permittivity. In the next few paragraphs we will try to describe the 

system that we worked with, emphasizing the aspects which are most relevant to the 

dielectric measurements.

From an electrochemical point of view, biological systems are highly branched 

circuits consisting of ionic conductors, aqueous electrolyte solutions and selective 

membranes. Aqueous electrolyte solutions are of exceptional importance to the biological 

and physiological processes in living matter, because they form the intra- and 

extracellular fluids. There is experimental evidence [32,42] that electronic conduction is 

also present in these systems, from electrons being transported over macroscopic 

distances due to peculiar relay-type mechanisms.

The conductivity of water (in theory o  = 3.8 IO"6 S/m at T = 20°C) depends on its 

degree of purification. The water molecule has 2 OH bonds at about 105°, has an 

approximate radius of 0.14 nm and it is dipolar, with a dipole moment of 1.87 D. The 

relative permittivity at 25°C and low frequencies is 78J .  Its structure is not completely 

known, one of the most common theories being the "flickering clusters", a continuous 

rearrangement and decay of a loosely packed lattice.

Essential process in tissues -metabolism and synthesis, reproduction o f genetic 

material, etc. - occur at the level of basic structures or units: the cells. In their vital

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

functions, the ceils are in continuous interaction among themselves and with the 

extracellular space, their membranes (both plasma and intracellular ones) being 

essentially the regulators of these interactions. The membrane consists of two layers (a 

bilayer) of oriented lipid molecules, with the hydrophilic heads outside and the 

hydrocarbon tails toward each other, as seen in Figure 22, with a mean distance between 

lipids of about 5 nm and a total thickness of 8-15 nm.

In fact the membrane is a very important and complex organelle. Embedded in the lipid 

bilayer are (not shown) cholesterol and lipid components, membrane and transmembrane 

proteins with specialized functions (e.g. ion channels, ion pumps). A more realistic 

picture of the membrane, in the so-called fluid membrane model is shown in Fig. 23:

CYTOPLASM

FIG. 23. The membrane model. Proteins are incorporated in a semifluid liquid bilayer. 
The direction of the ionic pumps (Na+, K*, and Ca *) is also shown (adapted from [43]).

aJXXJUUUUUUUU

FIG. 22. Lipid bilayer in a plasma membrane.

EXTRACELLULAR SPACE
No+ Ca2*
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The plasma membrane separates the cytoplasm from the extracellular solution. The 

concentration of the important ions is synthesized in Table II and in a graphical form in 

Fig. 24:

TABLE II. Example of ions concentration (in mM) in frog muscle.

Na+ \C cr Others

Outside the cell 120 2.5 120 r,Ca1+, Mg2+

Inside the cell 9.2 140 3.5 Organic anions

Nat* a 10 mM 
K* = 140mAf

RG. 24. Ions concentration in and outside cell membrane

All biological systems contain aqueous electrolyte solutions, which consist of either 

strong or weak electrolytes (organic substances with acidic or basic functional groups 

exhibiting low dissociation rates). Their pH ranges from 6.7 to 7.6 and their appearance 

is often gel-like. In spite o f their different permeabilities - the permeability of the 

membrane for Na+ is about 75 times lower than for the K* ions - the total flux, in opposite 

directions, of the two species is approximately the same. Actually, the permeability is 

potential dependent and this represents the basis for the membrane excitation.
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Across the membrane a potential difference (pm is established, always negative, 

since the cytoplasm is negatively charged relative to the extracellular solution and by 

convention - 0 u t. Typical values are between -50 mV and -100 mV, which for

an approximate membrane thickness of 15 nm, means an electric field across the 

membrane of the order of 106-107 V/m. This potential gradient is meant to compensate 

the concentration gradient and thus preserve the ion concentrations. The specific 

electrical rezistivity of the membrane is very high (~ IO6 Qm) compared with that of the 

extracellular fluid (~l Qm). Its specific capacitance is ~10'2 F /m \

We reviewed in this chapter the main polarization mechanisms with emphasis to 

extensions of the Debye and interfacial polarization, which can constitute more or less 

ideal models for the biological tissue. Emphasis on the mechanisms contributing to the a  

and low (3 dispersions, especially counterion and interfacial polarization, will be placed in 

the analysis chapter.
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CHAPTER IV 

ELECTRICAL IMPEDANCE SPECTROSCOPY

This chapter will be devoted to a description of the principles of electrical impedance 

spectroscopy and of specific variables accessed by the impedance experiment.

Spectroscopic techniques can be very broadly (and likely not accurately) divided 

into those which examine the molecular structure {e.g. FT-IR, NMR) and those which 

examine the physical arrangements and behavior of molecules within structures. 

Dielectric spectroscopy14 tends towards the latter category, although information on 

molecular structure can be gained. At low frequencies, the applied field will result in 

changes of the mean position o f the dipoles as the direction of the field changes, although 

these dipoles will still be oscillating around that mean. At high frequencies, the changes 

in field direction are so rapid that the dipoles are unable to reorient because of their 

inertia and viscous damping, so the total polarization of the system falls. However, at a 

characteristic frequency, (Op, the efficiency of the reorientation process is at a maximum, 

as the rate of change of the field matches the relaxation time o f the dipoles.

EIS involves the study of the response of a system to an applied electric field. The 

dispersion is the frequency dependence of the polarisation response. As the frequency of 

the field changes, different mechanisms of polarization will predominate. Two processes 

are associated with frequency dependence: resonance and relaxation processes. The 

regular oscillations {e.g. vibrations of intramolecular bonds) absorb energy over a narrow 

range of applied frequencies, but these frequencies tend to be higher than those of interest 

for EIS. The relaxation processes, on another hand, are essentially cooperative 

phenomena, involving the damping of the response of dipoles to an electric field, this 

damping being due to the inertia of the dipoles and the structure of the surrounding 

environment. Hence, dielectric studies may yield information concerning both the nature 

of the relaxing species and the structure surrounding that dipole. Dielectric phenomena

14 Dielectric analysis can use either temperature T or frequency o f the applied field v, as parameters. With 
this in mind, the rigorously correct name for the type of analysis we used, is impedance spectroscopy.
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may be studied over a frequency range o f 10'5 Hz to 1012 Hz, a much wider spectral 

window that most other spectroscopic techniques.

In general, the type of information that we are seeking is:

• Electrical properties of materials (systems) and their interfaces with

electronically conducting electrodes.

• The dynamics of bound or mobile charges in the bulk or interfacial regions of 

any kind of material: ionic, semiconducting, mixed electronic-ionic or 

dielectric15. For the study of the biologically relevant materials, the aqueous 

electrolytes and polyelectrolytes are the basic models.

Most of the time, the impedance investigation o f a system implies the existence of

electrodes at the boundary o f the system. The electrodes are used for applying an electric 

field and for measuring the potential and current generated as response to a certain 

excitation. Complex phenomena occur at the interface between electrode and system, 

depending strongly on their state and phase. For sustaining a steady current, one needs a 

steady sink for the arriving particles and a steady source for those departing. The most 

common electric charge carriers are the electrons and ions, the reactions taking place at 

the electrode acting as both source and sink for the corresponding particle.

Variables Accessible by Impedance Measurements

The electric response, i(t), of a system (electrodes & material), is expected to be linear if 

the magnitude of the applied voltage |vfr)| is smaller than the thermal voltage:

Vr = kT /eZ  25m V .

The most common approach is the excitation of the system directly in the 

frequency domain. A monochromatic electric field of frequency 6) is applied on the 

interface and the resulting steady state current is measured:

>s A dielectric may be defined as a material that contains dipoles, either permanent or induced. Polarization 
arises from a finite displacement of charges in an electric field and is distinct from conduction which arises 
from a finite average velocity of charges in an electric field.
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(58)

The impedance Z(eo) is defined as the ratio of the measured v and i:

Z(eo) = v ( t) / i( t) ,  (59)

with the modulus

I Z M K M / ' . M -  <«>

The impedance can be expressed in the complex plane as:

Z = Z  + / Z" ; = (61)

The complex plane Z Z " is usually called the Argand diagram. The frequency dependence 

of the real and imaginary part of the impedance, Z=f[o)) and Z"=j{co) is represented in 

the so-called Bode diagrams. A number of other parameters are routinely employed in the 

representation and analysis of impedance data and these are:

• Admittance Y, the inverse o f impedance Z:

^ f f l J s Z - ' ^ s K ’+ i ' - y  (62)

• Modulus function M:

M(a))=ia)C0Z(Q}) (63)

in which C0 represents the capacitance of the empty electrolytic cell, usually considered 

a parallel plane capacitor, Ca =eoA / d .

•  Dielectric permittivity e:

£ = AT1 (ffl) =  Yfi<oC0 = e '- i£ n (64)
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These relations also show the actual process for obtaining e from impedance, the primary 

results of a measurement. Permittivity e(a )  is preferred to Z, as output parameter of the 

measurement and analysis, in particular for dielectric materials with very low 

conductivities. This is not the case for biological samples and liquid electrolytes, where 

all dissociated charges are mobile, with mobilities that can differ considerably.

In the absence of an exact physicochemical model, the collected data are analyzed 

by a lumped circuit of the measured impedance Z. Unfortunately, the models are not 

proven to be unique, so other constraints have to be used. In general the disadvantages of 

impedance spectroscopy are related to the ambiguities in finding and interpreting a model 

for a given physical system. The objective is to find a reasonable equivalent circuit who’s 

impedance matches the measured impedance over the observed frequency interval. 

Elements of the equivalent circuits are usually resistors, capacitors and various 

distributed elements. The term distribution can either be used in the sense of a finite 

space extent of the system itself or in the sense of a distribution of the associated 

microscopic properties (conductivity, space charge polarization, etc.). The CPE (Constant 

Phase angle Elements), often used with great success in fitting the experimental data, can 

arise, for example, from processes associated with either the bulk or the interface (e.g. a 

time constant describing such a process can in fact be a distribution of such time 

constants, each characterized by a certain activation energy). In such a case, the RC time 

constant of a series of parallel circuit is replaced by a more complicated frequency 

response of a distributed impedance element.

The Frequency Response Analysis

The Frequency Response Analysis is based on the assumption that the system under 

investigation is linear. Few systems are, in reality, linear. We have described, in Chapter 

III, the particularities of the biological systems, electrolytes, cells and tissue and we 

emphasized that fact the for such complex and dynamic systems linearity is just an 

approximation.

The simplest way to think about the frequency response of a linear system is 

depicted in Fig. 25:
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it =  U s in  tot
o-

v =  V's in ((of +  6)
-o

FIG. 25. Excitation of a linear system with a monochromatic signal u(t). G(s) is the 
transfer function characterizing the system, Y(s)=G(s)U(s), with s=icn the Laplace

corresponding variable of t.

In a steady-state regime, the response of the system is y(t) having the same frequency as 

the excitation, but different amplitude and phase. In an ideal setting, for a linear system 

without noise, the relative phase and magnitude of the response would be directly 

measurable with an oscilloscope, as shown in Fig. 26:

IN P IT  tu n

IX P U T  L

RFSPONSP \t t l

RESPOXSF

FIG. 26. The steady-state response y(t), of a linear system to an input u(t).

Making such measurements for a whole range of frequencies, one should be able to 

numerically determine the impedance function. The advantage of such measurement 

resides is the frequency selective nature of the analysis, achieved by extracting from the 

system’s response one component, that of the excitation. Real systems, as already
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mentioned, are noisy and distorted (as seen in Fig. 27), and that makes impractical an 

accurate measurement of the gain and phase.

test signal drifting, noise-corrupted output

test sienal non-linearly distorted output

FIG. 27. The response of a real system, either corrupted by noise or with distortions due
to non-linearity

In such cases, the solution is the correlation frequency analysis. The output y(t) is 

multiplied with sin ox and cos ox and then integrated. A schematic of this method is 

shown in Fig. 28:

j 1

_i SYSTEM I 
I ON TEST |

d / s i n  tor

.SINE/COSINE
GENERATOR

s in  a>f

Ytl)

COS (Of

-R(T)

l* H > —
MULTIPLIERS AVERAGERS

»HT)

FIG. 28. A basic design of a correlation Frequency Response Analyzer (adapted from
Solartron ref [44])
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Why this system is more powerful in terms of dealing with noise and distortions, should 

become transparent from the following:

Let

u(t)= U  sin or, 

y(r) =  Fsin(tfif+0), 

with

Y = U |G(/Yw)| and 0 = ZG(ict)).

The output of the sine channel will be given by:

(65)

I f  •R(T) = U |G(/'ru)|—Jsincw • sin(<yr+ 0)dt =

U \r ,-  1  sin(2rar)'\ .= —|G ( r ty ) | |c o s ^ - -----—  sin0
'cos(2dtf) 1 

4 O) 4a

(66)

If the integration time T is chosen to be an integer number of half periods of the harmonic 

investigated:

then the output R(T) will be:

T = — , with N s Z  
0)

(67)

(68)

In a similar manner, it can be shown that the other output will be:

f N r t\  
O)

=y|G(i<»)|sin< (69)

From (68) and (69) one can find both the magnitude and phase of the response function. 

In practice, the integration is performed over a period of time equal with an integer 

number of periods o f the sinewave, in order to avoid non-linear harmonic distortions. By 

increasing T, one can reduce the noise influence in the measurement process to very low 

levels. This is one of the reasons for which most impedance spectra presented in this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

work are very smooth and virtually noiseless. The software for acquisition allows the user 

to either set N-the number of complete cycles used for averaging (see eq. (67)) or to 

preset a target value for the standard deviation such that the signal is integrated until the 

SD reaches that level.
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CHAPTER V 

EXPERIMENTAL METHODS

In this chapter we will describe the equipment and the method used for the detection of 

impedance changes in irradiated tissues. These changes were correlated and modeled 

with alterations in the electrical conduction and polarization and these , in turn, used as 

criteria for distinguishing between oncotic and apoptotic death, and for assessment of 

membrane and cell volume, radiation induced modifications.

The biological samples used throughout the experiments were human blood and 

rat kidney, lung, liver and heart tissue. In addition to the biological tissue, experiments 

were performed on irradiated discrete RC components, electrolytes and sand. The results 

on the non-biological systems were not of interest by themselves. They used for either 

calibration of the impedance analyzer, detection of possible radiation effects on the 

connecting probes, or the existence and determination of electrode polarization. Sand of 

various grain sizes and humidity was investigated to gain prior knowledge on Maxwell- 

Wagner interfacial polarization on a disordered system often modeled as a stochastic 

fractal.

The tissue types were chosen for a number of reasons. Our initial research focused 

on blood, in our opinion, a system that can be more easily modeled and understood. The 

preliminary measurements on blood were part of a NIH proposal in 1998. The reviewers, 

passed along with the enthusiasm for a method that showed the potendal of becoming a 

new way of monitoring radiation effects, their criticism towards a number of issues. One 

of them was the relevance of results obtained in blood versus tissues, thus suggesting a 

more earlier transition to biological tissue than we would have otherwise considered. 

Others issues discussed become, in the second phase of our research, the rationale for a 

redesign of the measurement cell, a more careful consideration o f the temperature effects, 

the exclusive use of the four-electrode method and the search for new electrode materials.

The tissues we used were provided by Dr. Anca Dobrian from Eastern Virginia 

Medical School (EVMS) and were excised from healthy mice and rat animals, which 

were sacrificed for purposes related to concurrent experiments running at EVMS. After
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sacrifice, the tissues (integral organs) were stored in Krebbs buffer, who’s composition is 

given in Table HI, at 4-5 °C (on dry ice). Studies of the impedance changes occurring 

after excision were done for each of the tissues, in order to have a baseline for the 

measurements during and after irradiation, and the results are reported for each tissue in 

the Data Analysis Chapter.

TABLE HI. Krebbs-bicarbonate free buffer composition.

Substance Concentration

NaCl 0.1M 5.8 g/1

KC1 4.69 mM 0.35 g/1

CaCl2 1.87 mM 0.27 g/1

MgS04 1.20 mM 0.29 g/1

KH3PO4 1.03 mM 0.14 g/1

HEPES 20mM 4.76 g/1

Glucose 11.1 mM 1.99 g/1

pH = 7.4

The irradiation of the excised tissue was carried out at Virginia Beach General Hospital 

(VBGH) under the direction of Dr. Raymond Wu, using a linear accelerator Clinac 1800, 

in a clinical setting. The precise timing of the irradiation with reference to the excision 

time was recorded for each sample. The specific dose received for each sample is 

discussed in the Data Analysis Chapter. We would like to emphasize though, that at this 

stage of the exploratory research, we were not particularly interested in dose or energy 

dependence of impedance changes. Sometimes two or three fractions were delivered 

during an irradiation session, but again we were only interested in the dynamic o f the 

impedance parameters during the whole session. Long term monitoring of the tissues was 

not possible due to the lack of perfusion, but we do hope that, fortunately, with adequate 

funding, we will be able to carry out in vivo experiments, in which we will establish and 

validate the relation between the impedance changes, the type and extent of the cell death 

in the tissue and changes in morphology.
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Impedance Spectroscopy Equipment

The equipment used for the measurement of dielectric properties in tissue was a 

Frequency Response Analyzer (FRA), Solartron 1260 and a Dielectric Interface, 

Solartron 1294, provided with generosity by Solartron, Inc. Some preliminary 

experiments on blood also used the Dielectric Interface 1296. Here follows a brief 

description of the main features of each of these components of the measurement system.

The 1260 Impedance/Gain-phase Analyzer is probably the most powerful, 

accurate and flexible frequency response analyzer available today. It can measure 

impedances up to 100 MQ, in two-, three- and four-terminal measurement configurations. 

The frequency ranges from 10 jiHz to 32 MHz with a resolution of I in 65 million (0.015 

ppm). The modulus and phase of impedance can be measured with an accuracy of 0.1% 

and respectively 0.1° and a resolution of 0.001 dB, 0.01°. It can use polarization voltage 

up to ±40.95 V and automatically sweeps frequency, amplitude or bias. Even though it 

can operate in a stand-alone mode, in our studies it was computer-controlled through a 

GPIB interface (IEEE 488).

FRA:-
1260,1255,1250,1253 Test Sample1294

Pan HI,
V HI

LO

GPU
P ara lle l In te rfac ePC

VI HI 
V1 LO

Gen

FIG. 29. Typical setting for bio-impedance measurements. A Frequency Response 
Analyzer (FRA) is connected to a Dielectric Interface, which uses a 4-electrode 
configuration to connect to the sample (adapted from Solartron documentation).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

The Dielectric Interface Solartron 1294 is a highly accurate and sensitive impedance 

interface which is designed to operate together with an FRA for 2- or 4- terminal 

impedance analysis. The 1294 also complies with safety specifications for the connection 

of electrical equipment to live subjects (e.g. IEC601), thus making it suitable for bio­

impedance measurements. A schematic of the interconnection o f the two devices is 

shown in Fig. 29:

Four terminal analysis allows the separation of the current stimulus Gen HI, 

LOW and voltage sense electrodes (V HI and V LOW) which is important in applications 

where the impedance of the connection cables and electrodes is significant compared to 

the impedance of the sample itself (which is the case for conductive - either ionic, 

electronic or mixed - systems). High accuracy 4-terminal measurements are very difficult 

to achieve in practice. The effects of unequal electrode impedances (often seen in 

bioimpedance measurements for example), and instrumentation effects to do with input 

and cable capacitance have, until now, limited the performance of 4-terminal impedance 

measurement equipment.

To
FRA.
Geu

r
Local-I Balance

12M Balanced (ViM-.itor
Gen HI

T eStSaiw le 
& C aurrtiq is

M tft
k

_IA '<W n

VHI

M i i t C u rre u t
G a L a ,

\  a— n

( l - k ) M easure Y i i j j

VLo

Remo«eJ C ottfol

Balance Measure

[ T ^ T oFRA 
_  , I  Chi Hi

z'-N To FRA 
Y  ClCHl

FIG. 30. Special feature of the Dielectric Interface 1294, which makes possible reliable 4-
terminal measurements
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The Solartron 1294 makes use of various measurement techniques including balanced 

generator, high impedance voltage sense inputs and driven shield cables, in order to 

achieve maximum accuracy 4-terminal measurements. The balanced generator can also 

cope with extremely difficult measurement situations where for instance the electrode 

impedances are not equal, a typical situation for bio-impedance measurements where it is 

difficult to obtain reproducible electrode contacts onto sample. At high frequency, a 

specific problem is due to errors introduced by input and cable capacitance. The driven 

shield technique replicates the signal waveform (which appears on the inner cable), onto 

the cable shield in order to minimize leakage current flow between the cable inner and 

the shield. Since no current flows between the cable inner and shield, the impedance 

appears to be very large and therefore the effects of the cable and input capacitance are 

minimized. A schematic representation of some of these elements is shown in Fig. 30.

FIG. 31. Electrolytical cell in the Dewar-like casing. Four o f the sample holders (of 
different diameters) are also shown on top.
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The 1296 Dielectric Interface is similar in function with 1294 but distinguishes itself by 

an exceptionally accurate current to voltage converter (1 fA resolution), which enables 

the measurement of the ultra-low capacitance and current levels, commonly experienced 

in material/dielectric analysis. An important concern in the design of the experiments was 

the temperature effect. The temperature coefficient of the conductivity of most biological 

materials is = 2% per °C at low frequencies. To make sure that the measured changes in 

impedance are only irradiation induced, we built a Dewar-like case, shown in Fig. 31, 

surrounding the measurement cell. The design of the cell itself was inspired from a 

previous design proposed of Schwan [45], pictured in Fig. 32.

FIG. 32. Electrolytic cell for the determination of tissue impedance (adapted from [45]).

The temperature was actively controlled with a pearl thermistor placed on the electrolytic 

cell. An error signal provided by an electronic temperature regulator drove a 

thermoelectric element (1.5 x 1.5 cm) situated under the cell. The 3 cm walls and the 

large heat capacity obtained by filling the vessel with water filled polyethylene sachets, 

allowed us to control the temperature to better than 0.02 °C per 30 min, the approximate 

duration of the measurements (controls and irradiation) per sample. Also, to limit the

c o n t a c t  nwo

LilCtTC e c u

HATHMM aCCTAOQC
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temperature rise of the sample due to ohmic effects, a maximum current of 100 jiA was 

chose. The applied potential, when the potentiostatic mode was used, was limited to SO 

mV, because of the non-linearity o f membrane impedance. To stabilize the temperature 

more easily, on one hand, and to slow down the denaturation processes on the other hand, 

all measurements on tissues were performed at temperatures close to the room 

temperature, in the range 23-25° C.

The dielectric changes reported here were measured in freshly excised tissue that 

was far from a physiologically normal state. An obvious question arises: are these 

properties likely to be representative for tissue in situl Of course, following this line, one 

can ask if these in situ properties, reflect, or can be directly related to physiological 

measurements in vivo. On of the reasons for choosing kidney tissue for observing 

radiation induced changes in impedance, was the fact that without elaborate preservation 

techniques, the kidney can be conserved up to 24 h with little or no deterioration. In 

general, our measurements were done on tissue freshly excised, and/or kept at 4 °C in a 

refrigerator for 2-10 h.

Electrodes and Specific problems

The electrical impedance measurements on biological materials pose a number of 

difficulties. Electrodes are used to inject current and acquire the induced potential across 

the sample or parts of it. Complex electrochemical reactions occur at the electrode­

electrolyte interface and create polarization phenomena. In certain conditions, this can 

create important errors in measurement. We will discuss some particularities, problems 

and solutions for the contact electrodes used in the frequency range (mHz-MHz) of our 

measurements.

The usual choice for an electrode is a metal, but can be in principle any 

conducting material which will work being immersed in an electrolyte. The problematic 

phenomenon to deal with is electrode polarization. Due to the free energy differences 

between electrode and solution, at the interface, two current mechanisms will occur: a 

Faradaic current resulting from charge transfer across the interface (neutralization of 

electrons leaving the electrode with the positive charge molecules in the bulk solution)
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and a non-Faradaic (or capacitive) one. The conduction through the electrolyte can be, for 

a large frequency range, considered purely resistive. As we already discussed, there are a 

number of models for the double layer formed at the interface electrode-electrolyte. The 

closest, the so-called Helmholtz layer, consists of aligned ions and water dipoles that 

balance out the charges on the aqueous surface of the electrode. The next one, the Gouy- 

Chapman diffuse layer, is formed by ions in solutions, in thermal motion, that 

compensate the electrode charge. For the usual buffers (physiological serum, Ringer 

solution, Krebbs buffer, etc.) the ionic strength is large enough so that the diffuse layer 

can be considered negligible in comparison with the Helmholtz layer. The currents across 

the double layer are displacement currents and do not require electron transfer. The 

capacitive mechanism can be therefore modeled as a capacitor Cp.

Returning our attention to the Faradaic current, we have to stress the idea that 

electron transfer between electrode and solution means a chemical reaction (reduction or 

oxidation). Thus the Faradaic process can be modeled in an equivalent circuit by a 

resistor, who’s magnitude is proportional with the activation energy of the reaction 

occurring at the electrode. For a heterogeneous electrolyte the potential of the electrode 

will determine which of the ionic species will undergo a Faradaic process. Sometime in 

series with the usual Faradaic resistor there is another impedance caused by a 

concentration gradient starting at the electrode and extending into the bulk - the Warburg 

Diffusion impedance. Warburg initially postulated that the resistance and capacitance of 

an electrode-electrolyte interface varies proportional with aTl/2. Later, Fricke showed in 

a more elaborate model, that the polarization resistance Rp varies as o f Um and Cp as 

Q)'m with m e [0.1,..0.7]. According to Jossinet and McAdams [46] an even better way of 

modeling is by using a CPA (Constant Phase Angle) element of impedance Z = A(io))~fi. 

In the linear model approximation (small signal kBT  □ hco) the values of Cp and Rp are 

independent of the current density, but in general this is not true. Simpson et al. [47] 

determined experimentally for Pt electrodes, the non-linearity limit to ~lmA/cm2 at 10 

Hz and 10 mA/cm2 at 1 kHz. In our experiment, the excitation signals were much smaller 

than the non-linear regime, being of the order 10-100 (lA/cm2.
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With respect to charge transfer there are reversible (or non-polarizable) and 

irreversible (polarizable) electrodes. In the first case, the electrode is at equilibrium with 

the ions in solution (e.g. Ag/AgCl). The polarizable electrode (e.g. the Pt electrode) is 

irreversible because there are no ions in solution in equilibrium with the electrode. Large 

activation energy leads to a large value for Rp, but increasing the surface area of the 

electrode can decrease it.

In the course of our experiments, we have tried a new material for electrodes - 

carbon aerogel -characterized by a very large effective area due to its porosity. Even 

though we obtained a very low current density and consequently a low polarization 

resistance there were some other phenomena for which reason we didn’t continue using 

it. Shifts in pH near the electrode, were reported in literature [48] for the carbon 

electrodes. Adsorption, the binding of an ion from the bulk of the electrolyte to the 

electrode was increased as results of the unusually large active area. The Ag/AgCl 

electrodes, the most commonly used reversible electrodes (in EEG, EKG, etc.) cannot be 

used in buffers since the silver ions are toxic. The Platinum electrodes, especially when 

treated (electrolytically coated) with black platinum in order to reduce the polarization 

impedance, are the electrodes of choice and this is what we used in our experiments.

On of the methods for reducing (theoretically at least) the polarization of 

electrodes is the use of the four-terminal method16. The excitation current is applied using 

2 electrodes and the potential measured across the sample, is measured with another pair. 

For a frequency sweep, the current have to be kept constant. The idea is simple, no 

current flowing between the 2 voltage electrodes, no electrode polarization.

When the polarization cannot be eliminated through experimental means, one should 

proceed to correct the data for polarization of the electrodes. That means modeling the 

equivalent circuit such that it will include equivalent elements describing the interface 

phenomena (double layer formation, diffusion, fractal structure of the electrode, etc.) 

This is especially a requirement for conductive liquids where the surface ionization and 

ion exchange processes in the double layer depend critically of the chemical nature of the 

investigated sample as well as the chemical and physical nature of the electrodes.

16 For two-electrode measurements the electrode separation is another method, together with high-surface 
electrodes and low current density.
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FIG. 33. Equivalent circuit for a conductive dielectric sample with electrode polarization

An interesting correction is described by Raicu [49] under the assumption that the 

system, sample and electrodes interfaces can be modeled as simple series and parallel RC 

circuits, as shown in Figure 33. The total impedance of such a system is given by:

Z«y) = Rp - i
o>R:C.

fflC, 1+ (to R ,c ,y
(70)

Considering, as previously explained, the elements describing the polarization as 

proportional with powers of to:

Rp = a o fm 

Cp =bd)"
(71)

with a ,b ,m ,ne  Q +. Taking derivatives of Re(Z) and lm(Z) with respect to © and under 

the low frequency approximation (o) -> 0) we obtain:

— R e[Z (© )] = -anw ~l~m
(72)

By plotting these expressions in the logarithmic scale, we can determine the constants 

and then subtract the electrode contribution (point by point) horn the general response
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Z(co). However, given the power of the software that weVe used , that allows us to fit 

simultaneously the Re (Z) and Im (Z) with the response of the equivalent circuit from 

Figure 33, the correction procedure can be done implicit, in the modeling of the 

equivalent circuit.

Sample irradiation

The irradiation of tissue samples was carried out at Virginia Beach General 

Hospital (VBGH), in the Radiotherapy Department. The radiation generator was a Varian 

Clinac 20 Radiotherapy Linear Accelerator in a typical treatment facility. The electrolytic 

cell was placed on the treatment couch and all irradiations were carried out at 100 cm 

SSD (Source to Surface Distance). A schematic of the treatment head, for photon (A) and 

electron (B) beam is presented in Figure 34.

'T arget Moved Aside  

Scattering Foil

Flattening Filter 
Moved Aside

~  Ion Chambers

X-ray Collimator

— Cone

(A) X-ray therapy mode; (B) electron therapy mode.

FIG. 34. The treatment head components of a linear accelerator for: A-photon beam and
B-electron beam.(adapted from [SO])
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^Primary Fixed Collimator 

Flattening Filter 

Ion Chambers

Movable Collimator,

Patient

Patient
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In brief, the linear accelerator accelerates electrons using a traveling or a stationary 

microwave field at approximately 3 GHz. The Clinac 1800 from Varian uses a stationary 

wave structure, with the microwave power coupled into the structure via side coupling 

cavities (rather than the aperture of the beam). The electron bean emerging from the 

accelerator structure is a pencil beam approximately 3 mm in diameter. The electron 

beam is bent at 270° by a precision beam transport system (achromatic electromagnet, 

focusing coils, etc.) The photon beam is the result of electrons striking a target of high Z 

material (tungsten) and producing bremsstrashlung radiation. The target is cooled with 

water and is thick enough to absorb most of the incident electrons. The efficiency of the 

X-ray production is proportional to Z the atomic number of the target and the tube 

voltage in volts.

In the electron beam mode, instead of striking a target, the electrons strike a 

scattering foil (a thin metallic foil, usually made of lead or aluminum). The purpose is to 

create uniform electron fluence across the treatment field, since at high energies the x-ray 

intensity is peaked in the forward direction. A small fraction of the electrons are 

converted into bremsstrashlung, thus ’contaminating’ the electron beam. While the photon 

beam is collimated by a set of jaws (see FIG. 34) for the electrons these jaws are kept 

wide open and the collimation is realized with a set of attachable cones, extended down 

to the skin surface to avoid the wide scattering of electrons from the collimator surfaces 

and air.

A more detailed schematic of the main components of this particular type of Linac is 

shown in Figure 35. The linear accelerator generates electron and photon beams with 

energy ranging from 6 to 20 MeV. The central axis intensity at 10 cm depth for a (10 x 

10) cm2 field and a TSD (Target to Surface Distance) of 100 cm is 77 ± 2 % of the 

intensity at maximum buildup. The depth of maximum buildup is 3.0 ±  0.2 cm for the (10 

x 10) cm2 field. The dose rate at maximum buildup for the nominal (10 x 10) cm2 field is 

variable in five steps from 100 to 500 rads/min at 100 cm TSD. By adjusting the movable 

collimator (see Figure 1A) the field size can be continuously varied from (0 x 0) 

(completely closed) to (35 x 35) cm2. The energy of the electron beam at isocenter17 can

17 The isocenter is the point of intersection of the collimator axis with the axis of rotation of the gantry.
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be varied discretely from 6 to 20 MeV in 5 nominal steps (6 ,9  12, 16 and 20). The field 

size can be varied from (4 x 4) to (25 x 25).

ELECTRO N  V A C IO N $ STA NO IN G  WAVE RETRACTABLE ACHROM ATIC BENOING 
GUN VACUUM PUMP ACCELERATOR TA R G ET M AGNET

FLA TTENIN G
FILTE R

OR
SCATTERIN G

FO ILS

IONIZATION
CHAM BER RANGE

FINO ERX-RAY
COLLIM ATORS

WAVE
GUIDE

K L Y S T R O N

FIG. 35 Schematic of major subsystems in Clinac 20 - Varian (from [51])

The field size and its position on the treatment couch can be visualized by a light field 

congruent with the radiation field. The light source project a light beam as if emitted from 

the X-ray focal spot.

Before irradiation of the tissue sample, the isodose18 distributions were measured 

for the energy used, using an automated dose plotter. This is essentially a water phantom 

(a Plexiglas cube of about lm 3) with a small ionization chamber that can be moved along 

3 independent axes under computer control, during irradiation, ’scanning’ the absorbed 

dose profile. A number o f such profiles are shown in the Figures 1-3 in the Appendix A.

'* Volumetric and planar distributions of the absorbed dose, represented by planes or curves passing 
through points of equal dose. The depth dose is usually normalized at the point o f maximum dose on the 
central axis and draw at equal increments of percent depth dose.
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Also in Appendix A, shown in Figure 4 is an artist’s view of a modem Ginac. The next 

figure (Fig. 5) in the Appendix A, represents the real accelerator used in our experiments 

at VBGH, under the direction of Dr. Raymond Wu.
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CHAPTER VI 

DATA ANALYSIS

This chapter is devoted to data analysis. We will start by a description of the methods 

used to validate and fit the data acquired in the impedance measurement. The analysis of 

each of the tissue specimens will then proceed, with different sections for blood, kidney, 

liver, lung and heart. Because of the particularities of each of the systems investigated, 

we will have a brief description of the specific structure and function of the tissue 

discussed, followed by a presentation of known dielectric data gathered from literature. 

Whenever prior knowledge on the irradiation effects on the tissue under discussion exists 

in the radiobiological literature, we will refer to it. Since the tissue used was excised, we 

will present data about the time evolution of the impedance for non-irradiated samples. 

The most relevant results of our impedance measurements will be presented and a model 

for analysis will be proposed. At times, we will present successive iterations leading to a 

final electrochemical model, and the time evolution of the model parameters is presented 

with and without irradiation. The most difficult part of the analysis will follow, 

discussing how the analysis of the model and the time evolution of its parameters, shortly 

after the sample irradiation, can be interpreted. Conclusions will be drawn in the sense of 

discriminating between oncosis and apoptosis cellular death following irradiation.

Data validation and fitting

One of the first methods of spotting anomalies in data, strongly recommended by 

Macdonald [52], is plotting the data in three dimensions, for all 4 functions Z, M, Y and 

e, and choosing the one which resolves best the experimental data over the entire 

frequency range analyzed. This visualization technique is valuable because for a given 

parameter, one can see all projections at once and outliers, which are sometimes difficult 

to see in one representation, are more easily spotted. In the same way in which the beauty 

of a mathematical representation is an indications of correctness, the smoothness of the 

frequency data, the lack of abrupt changes, are an indication of good quality impedance
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data. An example of a 3D plot for a simple series combination of RC parallel circuits is 

shown in Figure 36.

-1500
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-500
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1000

1500

Figure 36. Three dimensional plot of a sample circuit’s impedance response (the units for
Z’ = Re(Z) and Z" = Im (Z) are ohms).

We have used this primary visual test throughout our experiments.

A number of conditions have to be satisfied in order to analyze "good" 

impedances. It is usually easy to recognize features of impedance spectra that can be 

assigned to certain processes or structural elements. Sometimes though, impedance 

spectroscopy (IS) is applied to systems that have not been measured before, leading to 

Bode plots difficult to analyze in relationship to existing data. In such cases, there is a 

general mathematical procedure, introduced by Kramers [53] and Kronig [54] that can 

test whether the acquired impedance data is physically correct Assuming that general
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criteria like linearity, causality, stability and finiteness are satisfied, the Kramers-Kronig 

relations enable one to calculate the real component of the impedance T  = Re(Z) from 

the imaginary part Z" = lm(Z) and vice versa:

Z ’(< y )-Z ’(°o) =
X ' - O ) '

(73)

or if the zero-frequency asymptote of the real part is known, the following equation is

used:

ZXeo)-Z \0)  = — j  
K 1

f  Q)''

V X J
Z"(x)-Z"(Q))

x ’ - a r
—dx (74)

The imaginary part can be obtained from the real part, using:

Z T O . J S f Z W i z y o
K  i  X’ - 0 ) ‘

dx (75)

The phase angle can be computed from the magnitude of the impedance, |Z|:

, , 2<y flog Z(.t) 
<p(to)=— l - v — r d x  

n  { x ' - a ) ‘
(76)

and the polarization resistance can be extracted from the imaginary component Z":

Rp = Z X ^ ) - Z \ 0 ) = - ] ^ - d x  
k  i  x

(77)

The main difficulty in implementing these relations is the fact that the integration have to 

be carried out from 0 to «>, while the data is collected only for a finite interval. A number 

of methods are known, among them, polynomial fitting and then analytical integration or 

the use of the so-called Voigt model (a series of parallel RC circuits) in which since each
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RC circuit is transformable, the whole circuit will also be transformable (and the 

integration is thus replaced with an equivalent circuit fit).

A short comment on the requirement that the impedance be stationary is 

worthwhile: most of the biological systems do not satisfy this requirement, simply 

because a living system is a dynamical system. Because of this, the impedance might 

change during the actual measurement. Our measurement on irradiated blood, before and 

during the irradiation, was meant to put in evidence precisely the variation of the 

impedance in time, for a fixed frequency. One important drawback is that since we 

observed interesting features at low frequency, the measurement can take a long time. For 

consistency, we replaced this condition with fixed initial conditions; when during a 

frequency sweep there were reasons to suspect a non-stationary behavior, we repeated the 

measurement, preserving the direction and timing of the sweep (e.g. from high to low 

frequency, the same number of points per decade).

Data modeling

Before discussing the Complex Nonlinear Least Squares (CNLS) fitting 

procedure, which is at the heart of the model parameter identification, we will discuss the 

choice of the model. This is one of the most difficult steps of applying Impedance 

Spectroscopy! The criteria for a certain model can be prior knowledge on certain 

physicochemical processes or on the structure of the investigated system. A formal or 

mathematical model can be used as well, but interpreting the model will be in this case 

more difficult. The way we have preceded, the first step was an elementary analysis: for 

non-overlapping semicircular arcs in the impedance plane one can directly estimate the 

associated RC values and the value of the peak o f the arc (0^ = (RC)'1. The procedure 

gives good estimates for initial values, which taking into account the inherent instability 

of a nonlinear fit is a considerable advantage. Further contributions from circuit elements 

that are described by closed-form equations can be identified (e.g. CPE, discussed in the 

next section).

A supplementary difficulty can come from the mismatch between a more 

elaborate model and an incomplete impedance spectrum. In the case of a system, for
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example, the complete impedance spectrum can consist, in the complex plane, of two 

semicircles, but experimentally only one can be identified (the other may be in a 

frequency range inaccessible because of experimental difficulties). A criticism of 

equivalent model fitting is the fact that in complex models a large numbers o f free 

variables are present, and sufficient experimental data have to be provided, to be able to 

characterize all parameters. It was our practice, through this work, to always use the 

minimum number of circuit elements that fitted the experimental data. When the initial 

proposed equivalent circuit was fitted with the data, we identify the contribution of each 

process, and when the data did not support it, or the contribution was not significant, we 

simplified the circuit. In some cases, the contribution of different processes is shown and 

discussed explicit.

It should also be pointed out that there is no uniqueness theorem guaranteeing

that a good choice for a model or equivalent circuit is unique. Several different equivalent

circuits, though indistinguishable in their impedance response can be used to model the 

same experimental data, especially if there are errors in the data.

Since one of the most common features of the complex impedance plots of 

impedance data on biological tissues is the Cole representation of "depressed arcs", we 

are discussing the modeling and interpretation of this one in more detail. The empirical 

representation is:

Z = (78)

often substituted, in order to represent the high-frequency behavior, by the "Constant 

Phase Element" CPE, of impedance:

ZCPE = K{i(o)'a . (79)

Basically, we have three choices when modeling with the Cole equations: to represent the 

data empirically, attribute physical significance to the parameters in Eq. (78) or derive an 

equivalent circuit and attribute physical significance to the circuit components. Many 

authors relate the parameter a  to a "distribution of relaxation times". In fact, this being an
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empirical model, the possibility of such distribution doesn’t necessarily mean that a 

particular distribution has physical existence. Jonscher [55] in his series of articles on the 

"universal" dielectric response, also vigorously criticized the interpretation of a  as 

characterizing a distribution. The equivalent circuits (also used by us) are thought to 

reflect relationships between various underlying physical processes. A problem is their 

uniqueness (or better say, the lack of) and the fact that a particular choice depends very 

much of the researcher’s physical intuition. Using a large number o f parameters, an 

excellent fit can be obtained, even if the equivalent circuit employed has little relevance 

for the system under investigation. Another problem related to the choice of model and 

the composing elements is the mathematical expression used to describe them. The CPE 

element for example is described genetically by the Eq. (79) but there is little physical 

significance that can be attributed to the constant K. The expression we used to describe 

the constant phase element is:

ZCPE= R {io )T )'\ (80)

where R has units of Q  and T = l/a)0 can be considered an "average time constant". An

"effective capacitance" of the system can sometimes be also derived, CEFF = RaT , but 

since it is the particular value of capacitance at on - 1, it doesn't mean much. The most 

consistent interpretation of such elements is that they are distributed in space. Biological 

tissues especially constitute systems in which interfaces and distribution o f the 

microscopic properties thought the sample are very important, so the need, in fitting the 

data, of CPE elements simply signals such behavior. Given the complexity of the 

physicochemical processes, it is often our only choice to describe them by using 

continuum models expressed by equivalent circuits.

Once we develop a model, the fitting procedure have to be used in order to extract 

the parameters of the model and their uncertainties. The CNLS program used in this work 

was developed by Macdonald [56] and distributed as public domain software by 

Solartron. Inc. The program can fit real, imaginary or complex (simultaneous real and 

imaginary components) impedance data. The program minimizes the sum of squares:
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(8 ,)

with I )  and Z " ,, the impedance components for a\. Most often, a Marquard-Levemberg 

algorithm is used for the minimization of (81) but other solutions are used to ensure that 

the minimum found is indeed an absolute minimum in the parameter space.

An important problem, not always well-defined, is the choice of statistical 

weighting in CNLS. Because impedance is measured over a large frequency domain and 

may vary by orders of magnitude, if a unitary weighting is used (w, = 1) only the largest 

impedances will contribute to the sum S. In theory, one should just repeat the experiment 

10 times (or a large enough number) and determine the w, from the standard deviations. 

Such a procedure though, is very difficult to apply when measuring biological material, 

and impossible under the measurement & irradiation technique used for our work. An 

alternative, the proportional weighting, is to take the w, coefficients inversely 

proportional to the measured (or calculated) impedances: w; = l / Z ^ ^ p , . Such

weighting implies that the real and imaginary part of the impedance are determined with 

independent precisions, which is not always the case. A more common approach to 

weighting is the use of the modulus, such that the statistical weights become

w; = l/(Z  • + Z ’: ) . As result o f the model-fitting process, we obtained both j f  and the

weighted sum of the squares, as indicators for the goodness of the fit, as well as the 

model parameters and their errors. The main criteria of accepting the fit with a certain 

model, was the ability of the model to describe both low and high frequency data, while 

remaining physical meaningful. The indicators for the goodness of the fit were used 

mainly in the batch fitting (when a large number o f impedance spectra were fitted with 

one model), to ensure that their value was consistent throughout the whole batch.

In the next section, we will begin analyzing the impedance data obtained on 

different tissues. The specific microstructure, as well as arguments for the model choice 

and its parameters are given for each tissue type.
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Blood

Blood is a fluid tissue, which constitutes about 7% of the body weight (for an average 

human adult about five liters in volume). The whole blood of normal human subjects 

consists of a concentrated suspension of red blood cells (approximately 40-45% in 

volume, with white blood cells and platelets contributing less than 1%) in plasma. Plasma 

contains about 7g/dl proteins (albumin, globulins and fibrinogen), nutrients (minerals, 

vitamins, glucose), complex macromolecules carrying blood lipids, hormone growth 

factors, vasoactive peptides, etc. Fluid representing a protein-poor filtrate of the plasma 

diffuses through the walls of fine blood vessels and enters the perivascular tissue carrying 

nutrients, hormones and other regulatory compounds.

Freshly drawn blood is a red fluid of relative density 1.052-1.064. On standing, it 

rapidly coagulates into a jelly like mass due to extensive red blood cells aggregation. The 

prerequisite for this phenomenon is the presence of certain macromolecules in the 

suspending medium, such as fibrinogen and some globulins fractions, which normally 

occur in the plasma blood. The so-called rouleaux (’piles of coins’) formation, known 

from the mid 18th century, was recently investigated by using impedance spectroscopy 

with the aim of elucidating its growth mechanisms. However, if clotting is prevented (by 

adding anticoagulants) the blood cells settle, leaving the plasma supernatant. The 

physiologic pH of the blood is 7.4; it is a highly buffered fluid.

An obvious question that can arise is: why should we study radiation-induced 

effects in blood? Well, there are few answers to that. First, because it is an easily 

obtainable'9 and readily available system. Secondly, but not less important, is that it fits 

the description of the so-called "mixture model", a suspension of cells in an electrolyte, 

employed by Schwan, [30,31] and other pioneers o f the field, in explaining the Maxwell- 

Wagner theory of interfacial polarization. When irradiation comes into play, 

microcirculation and tumor - as well as healthy tissue - blood flow are important factors 

in the oxygen and nutrient supply of tumors.

19 Obtainable only refers to Dr. Wu’s efforts, for which I’m one more time thankful.
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Blood
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FIG. 37. Data gathered from literature on whole human blood [58]. Shown on the vertical 
logarithmic axis are both £r (value) and <J (S/m).

From the dielectric point of view, blood is more conductive than other tissues (a  = 0.6 

S/m), and its relative permittivity, Er around 2000, is a function of the hematocrit20. For 

this reason, when tissues with a heterogeneous structure and strong vascularization are 

investigated at low frequencies, the current path is likely to be, through blood to a large 

extent [57].

To give the reader an overall image about the known dielectric properties of blood 

we are presenting, in Figure 37 and Table I of Appendix B, information gathered from 

literature by Gabriel [58] and Andreuccetti [59]. Fig. 37 reflects the data gathered in 

different studies on whole human blood. A parametric model, (who’s fit is also shown on 

the graph) was created by Gabriel et al. [58] in which the permittivity is considered to be 

the sum of up to six Debye or Cole-Cole terms:
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Based on this model, Andreuccetti et al. developed a computer code [59] which 

calculates electric permittivity and conductivity for a specific tissue, for specific 

conditions (frequency range). The results of this calculation for whole blood, as a 

function of frequency, are shown in Table I of Appendix B. In Fig. 37, one should remark 

that there are no experimental points at frequencies less than I kHz, pointing out that 

many experimenters avoid the low frequency domain.

Radiation induced changes in blood

Red blood cells (erythrocytes), because of their numerous advantages - 

availability, characteristic size and metabolism, easy isolation of the cell membrane - are 

well-studied systems in radiobiology. A number of radiation induced effects are reported: 

an early structural membrane modification after irradiation [60], damage of the ionic 

pumps (Na+, 1C) [61], swelling, changes of the membrane permeability [62] probably due 

to peroxidation of lipids and decrease in the antioxidant enzymatic activity. When 

irradiation occurs in-vivo an additional effect may be due to radiation damage on the 

endothelium in the microvessels, which could lead to an increase in the vascular 

permeability. An increased excretion o f C1‘ on the first day after irradiation is known in 

literature under the name of polyuria. In the high dose region from 14 Gy up to 20 Gy, 

the increased supply capacity of blood in tissues suggests radiation-enhanced 

vascularization (probably the cause of edema, one of the very few visible radiation 

effects). One of the most radiation sensitive cells is the small lymphocyte. Small 

lymphocytes disappear from blood after very small radiation doses, and it is believed that 

they suffer inter-mitotic death. Most sensitive cells die a mitotic death after irradiation; 

most cells which never divide (among them the lymphocyte) usually require very large 

doses to kill them [63].

20 The ratio of the volume of the packed red cells to the volume of the whole blood
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In body fluids, under irradiation, a number of possible mechanisms of action 

causing changes in concentration of substances in body fluids in general, can be 

imagined:

• Release from a tissue or uptake by a tissue.

• Temporary damage to the cell membrane leading to increased level of serum 

enzymes due to leakage from cells.

• Abnormal cellular metabolism and subsequent release of metabolites into the 

blood.

• Destruction of cells (ex. Loss of nucleic acid metabolites from lymphoid tissue 

into the blood and urine; increase in the blood iron).

The change in the total blood volume results primarily from changes in the number of red 

cells, and secondarily from those in the plasma volume. Changes in electrolyte 

metabolism have been reported in patients during radiation therapy [64] but, most likely, 

these reflect the underlying malignant disease processes rather than the influence of 

radiation. Irradiation causes changes in blood level and urinary excretion of many 

compounds of low molecular weight. An increase in the blood glucose, perhaps related to 

changes in glycogen metabolism, is frequently observed during the first hours after 

irradiation. Serum enzymes have their origin in various organs of the body from which 

they are released into the serum. Changes after irradiation may represent release of 

enzymes from radiosensitive tissues or may be due to changes in synthesis. Conductivity, 

viscosity and surface tension of the blood are also reported in the literature to show 

significant alteration during the first hours after exposure [65].

Frequency response o f blood during irradiation

While blood constitutes a thoroughly studied system from the electrochemical point of 

view and its dielectric properties are well known, no dielectric measurements have been 

performed on irradiated blood, to our knowledge. We designed our first experiments, 

with the idea of measuring dielectric changes of the system during the irradiation process. 

At that time, the idea that we followed, briefly sketched, was the following; body fluids, 

blood especially, should be a very important component of the free-radical mediated 

processes of radiation damage. The serum ability to resist attacks by free radicals is
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measured by the total peroxyl radical-trapping potential (in plain words, the length of 

time that a subject’s serum is able to resist artificially induced peroxidation). At first, the 

antioxidants in the sample will be consumed by the free-radicals induced by radiation and 

no extra charge carriers will be available. After a lag phase, the free-radical dynamic will 

simply be governed, in a steady-state regime, by the generation-recombination rates. Of 

course, this is a simplistic view of an otherwise extremely complex picture: the free- 

radicals are created both in the intracellular and extracellular space so they are prone to 

damage both organelles and DNA as well as the plasma membrane and the surface 

receptors embedded in it. Some of the damage will be enzymatically repaired, some not. 

An arbitrary number of charged species will be created, with arbitrary mobilities and bulk 

concentrations. Reaction-adsorption (with different conditions for each of the mobile 

species) will take place both at the electrodes and membrane interfaces. It is likely that, 

due to the fluctuation in the number of charge carriers and their diffusion, the electric 

double layer (Gouy-Chapman) will be distorted and that will be observable in the 

capacity associated with it and the resistance associated with the charge transfer.

The frequency domain in which we pursued our investigation, covered both a  and 

low P dispersions, as well as what is sometimes referred to as the Q  dispersion [40, 66]. 

The later, which is a more extended interpretation of the low frequency response (down 

to frequencies of I O'4 Hz) seems to be due to the electrochemical (in our case, also 

radiation induced) generation of ions at the electrode surface, ionic conduction, trapping 

and relaxation of charge among traps, while the regular a  dispersions would be due to 

charge hopping in the bulk sample. The usual thinking is that at low frequency, the 

measurement of dielectric processes of the bulk sample is affected (or corrupted) by the 

electrode polarization. Our strategy was to model and use the information about the 

processes taking place in the proximity of the electrode, along with that about the bulk 

sample. A biological sample under irradiation with high-energy photons is an extremely 

complex system that can be studied at numerous levels. Having in mind that the role of 

radiation is to kill the cell, we will examine the relevant processes that can provide 

information, which can be connected to the death o f the cell. In this context, it should be 

mentioned that the irradiation of blood for transfusion is a current procedure in hospitals.
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The raw data collected on samples before and during irradiation is presented in 

Fig. 39. The measurements used a two electrodes configuration. A parallelepipedic glass 

cell of (12 x 12 x 2) cm was filled with about 200 ml heparinized whole blood from a 

perfusion bag. The Pt band electrodes (2.0 x 0.4) cm were placed at the periphery o f the 

cell, such that they were outside of the (10 x 10) cm irradiation field. The blood was 

stirred before and between the measurements but not during the measurement. The 

temperature was checked during the measurement session and founded 21.3 °C; the 

typical measurement time was 320 s. The measurements on blood were carried out during 

the irradiation. This was consistent with the idea we followed at that time, that a change 

in the steady state concentration o f charge carriers, reflected in the conductivity, must be 

in same relation with the lifetimes of free radicals and implicitly with the serum ability to 

annihilate them.

The first iteration in modeling this system response is based on the observation 

that there are two visible dispersions: one at high frequencies, probably a low (3 that can 

be assigned to the bulk suspension of cells in plasma, and another one, related to the 

electrode interface. While the one at high frequency is represented in the complex plane 

by the semicircle that we normally expect from RC-like dispersions, the low frequency 

one is sunk’, its center is below the real axis, suggesting the use of a distributed element.

M R2 R3
I •  \ A /

■ S £ J  U v

FIG. 38. Equivalent circuit used in a first approximation.

The result of fitting the experimental data with this model is shown in Figure 40. The 

high frequency dispersion is well fitted, but not the low frequency one.
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FIG. 39. Impedance spectra on whole blood, before and during irradiation, in the 
frequency range (50 mHz-1 MHz), a) (Z,0) impedance modulus-phase representation; b)

(Y”, Y1) admittance complex plot

:i Admittance Kis the inverse of the impedance Z : Y - Z '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

No photon beam

5

RtResuft

Jlf I 111̂ .lll«< IIIMi 11 MX ■ ■■■* 1 HIM nWHnlw Mill I 11*1 Q

10* 10* 1 0 ' i t f  Itf i t f  i t f  10* 1 t f  it f  it f

Frequency ( f t )

FIG. 40. Simulation of frequency response for the circuit in Figure 38. a) |Z| and 0 vs. 
frequency representation (Z=|Z|e10) ; b) Complex plane representation.

The numerical values of the model are: R| = 202.4 f t  represents the resistance o f the 

electrolyte (plasma blood); the high frequency dispersion, very likely a membrane 

response, represented by R3C2 (61.94 Q and 5.101 nF) has a relaxation time of x = 32 [is, 

corresponding to a frequency of about 503.7 kHz. The CPE element has a capacity of 

381.77 pF and an exponent a  o f 0.67. The resistance R2 is a charge transfer resistance 

(explained later in the chapter) of 1237 ft.

Re Cl

R2R2 DE1 C2

FIG. 41. Improved equivalent circuit for whole blood data
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The next step in improving the response of the equivalent circuit is to add a distributed 

element DE, a shown in Fig. 41. The result of the fit with the improved model is shown 

in Figure 42:

-30

No photon beam 
FitResult

theta

-10

FIG. 42. Impedance modulus and phase vs. frequency representation of the non-irradiated 
blood. The continuous line represents the fit with the model and the frequency domain 
was extended to check if the fitted response is physical meaningful (finite response at

very high and very low frequencies).

This circuit was suggested by the processes known to take place at the cell membrane 

interface as well as the interface electrode-electrolyte and which are observable in the 

frequency domain investigated. Under the effect o f a continuous delivery of ionizing 

radiation the chemical composition o f the extracellular medium is definitely affected. As 

a result, it is expected that the redistribution of minority ion concentration (Na+, K \  Ca2+ 

and Mg2*) will significantly change the cell’s ionic boundary, with possible 

(electro)biochemical consequences. It is the change in the potential of the interfacial layer 

(membrane-extracellular fluid) and the relaxation time dependence of specific
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interactions involving membranes sites that can greatly affect cell development and 

function. A charged species can be imagined interacting with a membrane surface site 

through changes in the hydration layer, displacement or spatial distribution changes. 

Since the concentration of water dipoles in tissue electrolytes is much larger than of any 

other ions, the first layer (Stem) of membrane bounded water dipoles will not suffer 

changes due to the modification of the ionic atmosphere. The Gouy-Chapman layer will 

be influenced by the adsorption of hydrated ions. R2 and C2 from the equivalent circuit 

describe (or represent) the adsorption (binding) kinetics and surface concentration. Q  

represents the observable dielectric and electrostatic response, caused mostly by the lipid 

bilayer structure. R iQ  are represented by the peak appearing at about 503 kHz. The 

distributed element DE has a more blurred physical interpretation. In general the 

distributed elements are very important in understanding, fitting and interpreting the 

impedance spectra. The word distribution can be used in two different ways. One is 

associated with nonlocal processes (e.g. diffusion) which can occur irrespective of the 

homogeneity of the sample or its physical properties (e.g. charge mobility). The other 

interpretation, by contrast, is based on the fact that sometimes the microscopic properties 

are themselves distributed. For example, [67] when a time constant associated with either 

a bulk or interface process exhibits a temperature dependence and is thermally activated 

with a distribution of energies, a series or parallel RC circuit is no longer appropriate and 

a CPE element is used instead. In our choice for the type of the distributed element, we 

would be tempted first to choose a Warburg impedance (semi-infinite diffusion, typical 

for cell-fluid interface). Such an element has an impedance of the form:

where a  is given by:

Zy, -  o a f r~ -  ia o f1/2, (83)

ff =  RJ  (84)
n F C'JlD

When this impedance is plotted in the complex plane, is represented by a semicircle 

connected to a straight line at 45° from the real axis. What we obtained was not a 45°
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angle, and an attempt to fit the data with an equivalent circuit (not shown) containing a 

Warburg element failed. Therefore we used a more general type o f distributed element, 

which in limiting cases can become a diffusion impedance. Its generic form is

Z(<u) □ A(icoTa , (85)

where the coefficient a  is a measure of how wide the distribution of relaxation times is.

—  it

X

X
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frequency (K )  frequency (Ht)

FIG. 43. Comparison between data and fit of the equivalent circuits describing the data
shown in FIG. 41.

X2 and respectively the sum of squares, for the fit of experimental values with the model 

are (2.944-10-6, 4.063-1O'4 f t2) for the non-irradiated sample and (6.334-10-6, 8.741* 10"4 

f t2) for the irradiated sample. The numerical values of the parameters used in the 

equivalent circuits for whole blood and irradiated whole blood are shown in Table IV.
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TABLE IV. Values of the parameters in equivalent circuits from Fig. 41 fitted to data 
shown in Fig. 43. The two values shown for each parameter correspond to the non­
irradiated sample (first) and the irradiated one (second). In bold are the values which 

differ significantly during irradiation.

R e  (SI) R e(  Error)

203.4

203.1

cm
4.77E-09 

4.80E-09 

R1( Q) 

2136 

2680 

R 2(S l)

67.35

66.36 

D E1-R(Sl)

1723 

2318 
D E1-T  

0.000234 

0.000232 

DE1-P  

0.7137 

0.7242 

C 2 (  F) 

0.001764 

0.001405

0.2909 

0.5841 

C /(Error) 

4.85E-11 

9.63E-11 

R /(Error) 

10.81 

31.94 

R2( Error) 

0.3017 

0.5988 

DE7-fl(Error) 

5.045 

14.89 

DE7-7(Error) 

8.60E-07 

1.57E-06 

DE7-P(Error) 

0.0007 

0.0013 

C2( Error) 

1.77E-05 

3.99E-05
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Time dependence response

The second type o f experiment we did on blood was the time domain measurement, 

presented in Fig. 44. The signal acquisition was initiated and after a time interval of 40 s 

the photon beam was activated. The photon beam energy was 6 MV with a size of (10 x 

10) cm field and it delivered a dose of 10 Gy. Two Pt band (2 x 0.4) cm electrodes, at 12 

cm distance, positioned outside the irradiation field, were used for measurements.

The idea was to check whether differences in the measured impedance can be seen 

immediately after the photon beam is activated, and which of the two components T  or 

Z" are more sensitive to these changes. The impedance measurement was carried out at 

constant frequency of 1 Hz with a constant current excitation of i = 50 |iA. It is clear that 

in this electrode configuration (only for the blood samples) interfacial phenomena played 

a significant role, along with the bulk of the sample. We believe that 2 different effects 

are present in these measurements: interfacial reaction, seen at short times and mass 

transport processes, at longer times. As often the case in the ac measurements, a steady 

state obtained in the frequency domain, might correspond to a transient state in the time 

domain. As shown in Fig. 44, the beam was switched on after 40 s, at which time a 

change in the traces representing Z" become evident The resistive part of the impedance, 

Z ’ doesn’t show any changes when the beam is switched on. The time variation of Z" 

without the photon beam on is believed to be a dynamic response of the interfacial 

electrode-electrolyte double layer to the low frequency applied. The dynamic behavior 

observed in the time domain measurements can be explained qualitatively by the 

interplay of electrode kinetics, transport processes occurring in the electrolyte and control 

device (potentiostat or galvanostat).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

-410

-406

-400
10P 10' 10? 10?

Tire (Sec)

FIG. 44. Imaginary component of impedance, Z", measured at I Hz, as function o f time 
for irradiated and non-irradiated blood. The photon beam is activated after 40 s. No 

changes occurred in the real component, Z’.

It is known that some of the processes that show instabilities or oscillations in 

time are accompanied by spatial pattern formation. A thorough discussion o f the subject 

can be found in [68]. What we will attempt here, is to describe a simplified model [69] 

capable of explaining such time instabilities.

The general equivalent circuit is shown in Fig. 45, and consists of a resistance Re 

modeling the conduction in the bulk electrolyte and other external resistors, the capacitor 

Cm modeling the diffuse double layer and a Faradaic impedance Z/ associated with the 

double layer at the electrode-electrolyte interface:

\
\

No photon beam 
Photon Beam switched ON 
after 40 s

Ar
A A^rf
V s  f 1

W"
" M *

I >>>Beam ON

I i 11 ml i » ■ ■ i ml I ............
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FIG. 45. Generic equivalent circuit used to model the dynamic instability.

The current / in the circuit is:

V - V  dV
i = — *L = ic + i , = C dl- ^ + i f , (86)

where V is the applied voltage, Vji is the potential across Cm. A majority of our 

measurements were done under potentiostatic conditions, in which the generator output 

can be "balanced" in order to compensate for stray impedance or inequalities of the 

electrode impedance. The steady state solution dVrf(/d f 1 ^ = 0  (with V the constant

applied voltage) leads to if  =i  = ( V - V s)jRe . Assuming a small perturbation of the 

potential across the double layer in the steady state regime Vs=Vs+SV:

sv
S V = i f {Vs) + ° ! -  

v=v, c f
(87)

we can examine the stability of the stationary state described by Eq. (86):

SV , (88)

which translates into Zf > 0 . The system becomes unstable if the right hand term

becomes positive: Zf < 0 and \Zj{ < Re. We should point out here that in the Solartron 

system, the measurement probe has build-in 10 k ft resistors in series with the electrodes, 

but that might not be enough for all situations encountered. In our blood measurements, 

the cell was about 12 cm wide and the electrodes were placed at the ends in order to place
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them outside of the 10 x 10 cm radiation field and the conductivity of the electrolyte 

(serum) was fixed. Therefore, the usually available degrees of freedom in stabilizing the 

current-voltage relationship - repositioning the electrodes or increasing the electrolyte’s 

specific conductivity - were not applicable. The faradaic current if can be expressed as:

if  = nFAk(Vdl )co (89)

where n is the number of electrons involved in the charge-transfer process, F- Faraday’s 

constant, A the electrode area, k(Vji) the heterogeneous rate constant and c0 the 

concentration of active species at the electrode-electrolyte interface. Knowing that 

Z~' = dif jd t  and using the form for if given in Eq. (89), one can easily see how a

negative Z/ can be obtained: a decrease of the available electrode area, a decrease of the 

electron transfer rate or a decrease of the concentration of electroactive species. The later 

is attributable to the double-layer effects. A quantitative analysis of the time 

measurement like those presented in Fig. 44 is extremely difficult given that, both with 

and without irradiation, the electrochemical system is far from thermodynamic 

equilibrium. We can only speculate, based on this model and on the fit parameters in 

Table IV, that changes, during the irradiation, of the resistance R* and of the 

concentration of charge carriers and consequently o f the double layer parameters moved 

the system from an oscillatory behavior to a bistable one.

Conclusions

We have seen changes during the irradiation of the blood sample, both in the frequency 

and time domain. As seen in Table IV, the overall resistance of the sample, measured at 

low frequency, increases during the irradiation. The electrolyte resistance (serum) Re, 

doesnt vary. Unlike the pulse radiolysis, where conductivity increase due to free radicals 

in a solution can be measured, in the continuous irradiation, the steady state concentration 

of free radicals is very small, unable to produce any significant changes. A major obstacle 

in detecting any change in conductivity due to free radicals is the fact that the 

conductivity of blood samples is significant even before the irradiation. The expected
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change in c  is proportional with £  Ac, Z, ̂ , where Ac is change in the concentration of
l

each ion, Z is the charge and X is the equivalent conductance (ex. H*: 314 Scm 2; OH‘: 

172 S cm2; Cl':65 S cm2, etc.). Even though it is not obvious from the equivalent circuit 

(Fig. 41) the subcircuits reflecting the high frequency dispersion peak are R iQ , and 

RiCiDEt for the low frequency one. In literature, erythrocytes are described as not 

having an a  (low frequency) dispersion, so we would be tempted to attribute the low 

frequency response to "electrode polarization". Due to the two electrode technique 

measurement, there are effects due to electrode polarization. We compared the blood 

samples with sea water, known to have properties close to the plasma serum and a 

powerful low frequency dispersion at about 2 Hz was evidenced, but not the double 

shoulder we can see in Fig. 43. One should to remember that these measurements were 

completed during the irradiation. Due to the uncertainty in attributing meaning to the low 

frequency impedance changes, we decided to change, for ail the other tissue samples, 

both the technique - using exclusively four electrodes - and the timing of the 

measurements - the data acquisition started after the irradiation. No measurable changes 

during the irradiation, at frequencies associated with the cell membrane, were identified 

in blood.

Kidney tissue

An extensive part of our study was done on kidney tissue. One of the reasons was 

the fact that even without elaborate preservation techniques, the kidney can be conserved 

up to 24 h with little or no deterioration. Another important reason is that is has long been 

recognized that kidney is quite sensitive to ionizing radiation, so we do expect to see this 

sensitivity also translated in changes o f dielectric parameters. Reports showed that doses 

above 20 Gy regularly induced vascular and tubular injury that led to loss of functional 

tissue [70]. Histological studies of kidneys exposed to lower doses rarely showed signs of 

irreversible injury, although subtle changes in vascular endothelial cells could be 

detected.

A number of 7 kidney pairs were studied. We usually used the kidney pair 

harvested from the same animal in the following manner one was kept in Krebs buffer in
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an measurement cell, as a control sample, the other one being subjected to ionizing 

radiation in an identical cell. In general, our measurements were done either on tissue 

freshly excised, or kept at 5 °C in a refrigerator for 2-8 h. In both cases the organ was 

suspended in Krebs buffer. The tissue was irradiated with 6 MV photons; absorbed dose 

per fraction was 11.1 Gy. Four dose fractions were typically administered to all irradiated 

kidney samples. The effect of the excision was studied thoroughly, on kidney as well as 

on the other tissues. The temperature was actively stabilized at 22 °C. A four-terminal, 

(black Pt electrodes), measurement technique was used in order to minimize the 

polarization effects at low frequencies. To limit the temperature rise of the sample due to 

ohmic effects, we used (in the galvanostatic regime) a maximum current of 100 |iA. The 

controlled potential mode (potentiostatic regime) was also used.

Kidney

ioe-i

FIG. 46. Kidney data gathered from literature ([71])
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The balanced generator helped reduce errors due to common mode voltages and 

dealt with difficult measurement situations where for instance the electrode impedances 

were not equal - a typical situation for bioimpedance measurements where it is difficult to 

obtain reproducible electrode contacts with the sample.

Driven shield cables were used to minimize the errors introduced by input and 

cable capacitance.

Thoroughly studied from dielectric point of view, the available information from 

literature was gathered by Gabriel [58] and Andreuccetti [59] and is summarized in Fig. 

46 below and Table I in Appendix B. Should be noted that no experimental points are 

shown for frequencies lower than 10 kHz; on the other hand even the simple Cole-Cole 

model used by Andreuccetti predicts a low frequency dispersion in which we are 

particularly interested in our study.

Since our experiments were done on excised organs, it was very important to find 

out detailed information about the response of excised tissues. It is known that while the 

metabolism declines immediately after excision, the |5 dispersion declined noticeably 

only after metabolism has ceased and disappears in a few days. The changes are most 

prominent at low frequencies and it was suggested [72] that the response of the tissue 

after excision is a function of cellular damage, since freshly excised samples show 

responses similar with those obtained in-vivo.

Our data on excised samples, shown in Fig. 47, are typical for impedance spectra 

of organs during ischemia, as reported in the literature [73]. The main feature observed in 

Z ’ = Re (Z) is the increase of the impedance at low frequency, consistent with the closing 

of gap-junctions, cell swelling and accumulation of metabolic products. The dispersion 

peak in Z" = Im Z(o)) shows a displacement towards higher frequencies (from ~ 4 kHz to 

8 kHz). The six measurements displayed (in the order given in the legend) were recorded 

at t = 0, 837, 1539, 4227, 35098 and 36337s. For the first four, the low frequency 

resistance is increasing. The ion pumps at the membrane level have to stabilize the 

membrane potential and that requires energy, which is not supplied anymore by the blood 

carrying oxygen and nutrients.
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FIG. 47. Real (a) and imaginary (b) part of impedance for a kidney sample at different 
moments of time after excision. The samples were not irradiated. Times of measurement, 

starting with the control, are: t = 0,837,1539,4227,35098 and 36337 s

Instead energy is gained anaerobically, and the cell swelling occurs as a result of 

intraischemic ion production changing the osmolarity between the intra- and extracellular 

compartments.

The choice for the equivalent circuit shown in Figure 48, was suggested by the 

self-embedded micro architecture of the tissue [74]. In the case of an organ tissue, we are 

dealing with a very complex, highly structured environment. A modeling based on 

physico-chemical processes would be an extremely difficult enterprise. Instead, we chose 

to model the tissue using an equivalent circuit and to relate the circuit elements to these 

processes. C| describes the interfacial polarization (due to the heterogeneous 

microstructure of the tissue) and its characteristic frequency is expected to be observed in 

the p region of the dispersion.
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FIG. 48. Equivalent circuit for kidney samples

An expression for this capacitance is given in [75]:

(90)

where L is the specimen length, c is the concentration of charge carriers and p is a 

blocking parameter with values between 0 (complete blocking) and °° (free passage of the 

charge -carrying species). Individual cells are surrounded by a membrane having low 

leakage, the interior containing cytoplasm with resistivity of the order o f 3-400 Qcm. The 

conduction pathway through the interstitial space is modeled by R| and the membrane 

itself by the circuit C2R2 . Given the complex structure of the tissue and the fact that not 

all cells have the same size/shape, they are not in the same cell cycle point, etc. we 

represented all these by the generic element DE (distributed element) in fact a Constant 

Phase Element characterized by the parameter DE-Phi in a series-parallel configuration 

with a resistor. In the expression of the impedance of the distributed element 
£

ZO E = - ~ ~   one can see the meaning of its parameters DE-R, DE-T and DE-Phi
1 + (i-0)-T)

plotted in the data analysis section.

The data on kidney were fit with the circuit shown in Fig. 47 and the numerical 

simulation for each set of data was extended to the frequency domain [10'3, 10s] Hz in 

order to see clearly the behavior of the a  and f) dispersion peaks. These numerical 

simulations are presented in Figure 49.

C =
KkT 4<r

1 w10) L e
1 +

jckT 4<r
£ S  Q ) T ' {2+p )
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FIG.49. Numerical simulations of the equivalent circuit used to fit the kidney data 
(extended frequency domain). The experimental data (open circles) are shown only on

one fit.

For the first four measurements, what we are seeing is basically cell swelling (and 

consequently a decrease of the extracellular pathways for current at low frequency) and 

the onset of oncosis.
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FIG. 50. Impedance spectra of irradiated kidney tissue samples.
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Even though the kidney is known to be very resistant (can survive up to 24 h in a 

bucket with ice, in order to be transplanted) if one waits long enough (and given that the 

experiment was carried out at about 22°Q , irreversible damage occurs, necrosis installs 

in the tissue, and the conductivity increases as a consequence of membrane breakdown. 

The slight shift in the P peak is probably due to the metabolically produced ions and an 

increase of the intracellular conductivity. To present the time dependence for all the 

model parameters we decided to use graphs, which are easier to interpret. The error bars 

are shown for each of the displayed parameters. For the irradiated samples, the values 

measured right after irradiation are marked by an arrow. For the non-irradiated excised 

tissue, only the first four measurements, which are in the same time frame as the 

irradiated tissues, are presented.

4.8CE011- irradiated samples 
Non-irradiated samples

4.0CE011
1000 4000 50000 2000 3000 6000

Tlme(s)

FIG. 51. Ci time dependence for non-irradiated kidney samples and irradiated samples.
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FIG. 52. R i time dependence for non-irradiated and irradiated kidney samples.
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FIG. 53. C2 time dependence for non-irradiated samples and irradiated kidney samples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I l l

580-

580-

540-

E  520-

480

Irradiated samples 
Non-irradiated samples

440

420-
0 1000 2000 3000 4000 5000 8000

Time (s)

FIG. 54. R2 time dependence for non-irradiated kidney samples and irradiated samples.
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FIG. 55. DE-R Time dependence for non-irradiated and irradiated kidney samples.
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RG. 56. DE-T time dependence for non-irradiated and irradiated kidney samples.
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RG. 57. Time dependence o f the Phi parameter of the distributed element for non- 
irradiated kidney samples and irradiated samples.
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Almost the rule in all these time dependencies is the fact that the values of the model 

parameters for the irradiated samples vary slower than for the others. The oncotic death, 

as explained in Chapter II, can occur simultaneously with apoptosis. The ischemia, 

causing oncosis, is concurrent with the apoptosis, likely induced by irradiation. The 

characteristics of the ischemic swelling can be recognized in the increase of Q  (as seen 

in Fig. 51 for the non-irradiated samples). For the irradiated sample we have an increase 

of Q  after the first irradiation (probably due to the initiation of lipid peroxidation, known 

to lead to increase of membrane capacitance), followed by a slow decrease of the 

membrane capacitance, consistent with the formation of apoptotic bodies. We have to 

remember that these measurements are on the whole tissue system, not on individual 

cells. Since the tissue samples were measured under the same conditions, the reduction of 

what was identified as oncotic swelling can be explain by the occurrence of a concurrent 

phenomenon, driving these parameters in the opposite direction. As discussed in the 

section on counterion polarization, the relaxation time, assuming the diffusion coefficient 

does not change, depends on the square of the radius of the particle [Eq. (54)], so the 

decrease of the characteristic frequency of the low frequency dispersion peak, reduced for 

the irradiated samples, can be accounted for the increase o f the radius of the cells due to 

swelling. The onset of radiation induced apoptosis is characterized [15] by a reduction of 

plasma membrane function. The value of Q  practically stops increasing after the first 

dose and then exhibits a weak reduction as a function of both dose and time. It is not 

clear at this time whether the supplementary doses received by the tissue are at the origin 

of this behavior or a single dose followed by monitoring would have had the same effect 

The resistance Ri associated with conduction in the extracellular space shows also 

smaller values for the irradiated samples. Given that the cell morphology associated with 

apoptosis is best described by shrinking and apparition o f the apoptotic bodies, the 

reduction of both Q  and C? in the irradiated samples can be explained by the apparition 

of a fraction of cell population characterized by lower radii and membrane 

depolarization. Since both tissues were measured at similar times after excision, the only 

explanation consistent with our findings is that we are observing, for the irradiated 

samples, both oncosis and apoptosis.
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Liver tissue

To demonstrate the link between radiosensitivity and impedance changes, we 

measured control and irradiated liver samples. Aside from its availability22 the liver is 

very important through its multitude (it is thought their number is around 500) of 

metabolic and secretory functions accomplished in vertebrate organisms. The liver 

secretes bile, a digestive fluid, removes wastes and toxic matter from the blood, regulates 

blood volume, and destroys old red blood cells, metabolizes proteins, carbohydrates, and 

fats, stores glycogen, vitamins, and other substances, synthesizes blood-clotting factors, 

etc.

FIG. 58. Sample of liver tissue. Connective tissue and blood vessels are not shown.

Liver tissue consists of a spongy mass of cells organized in ’hepatic cell plates’ (see 

Figure 58) tunneled through with blood vessels and bile ducts. Parenchymal cells 

constitute the bulk of liver tissue (about 90%) o f the tissue and carry on more metabolic 

functions than any other group o f cells in the body. A second group of cells, called 

Kupffer cells, line the smallest channels o f the liver’s vascular system and play a role in 

blood formation, antibody production, and ingestion of foreign particles and cellular 

debris.

“  Our thanks go to Dr. Anca Dobrian from EVMS, which helped with the procurement of the rat tissue 
organs, and without whom little of the work presented here would have been possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

The liver tissue is considered to have moderate sensitivity to radiation-induced 

damage. In the literature [70] it is known that immediately after irradiation, the 

morphology of the parenchymal cells is not changed, even though at microscopic 

inspection an accumulation of glycogen and lipids can be detected. At high doses (as 

opposed to the radiotherapeutic doses) necrosis occurs in the parenchymal cells, but at 

low and moderate doses, the changes in the ceil population are small. More significant 

than metabolic changes induced by radiation are those due to dietary factors and 

hormonal regulation

I 06*« T

t 06-2

RG. 59. Dielectric studies on liver tissue and fit [71], The vertical logarithmic axis is
common for er (value) and a  (S/m).

A common dogma is that since most normal cells in adult liver are in interphase 

and do not divide, when irradiated, the radiation injury becomes manifest only when the
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cells are stimulated to divide23. Our results, presented in Figure 61, are consistent with 

reports from the literature, showing that the liver is relatively resistant to radiation injury. 

The literature results on liver, were gathered by Gabriel [71] and presented in Figure 59. 

As in the discussion on the kidney dielectric properties, we are not attempting to add 

another experimental point to the data existent, but to make the reader aware of the 

known behavior of these properties in the frequency domain we are studying.

As in the case of the kidney, we tried to alleviate the variability of the tissue by 

exploiting the existence of quasi-similar lobes of the liver. Thus, coming from the same 

animal, one lobe was used for measurements performed on non-irradiated tissue, while 

the other was measured after irradiation. We examined a number of 9 liver tissue organs. 

Temperature was kept constant at 22°C and the tissue was suspended in a Krebs solution. 

The same measurement protocol, used for the kidney, was repeated for the liver. We first 

conducted a study to detect the time dependence of impedance changes following 

excision without irradiation.

3X0
control

W'lO'
firequocypC)

----- 2

woo

ftayancylK )

FIG. 60. Impedance spectra for fresh, non-irradiated liven a) Z’(f) and Z"(f); b) Z" = Z" 
(Z’). The time for the 5 measurements shown is: 0,917,1826,12273,13047 s.

23 Extensive regeneration of the liver can occur when part of the organ is destroyed. For example, after the 
excision of 2/3 of the liver, the remaining parenchymal cells begin to divide 24-36 h later and the organ can 
be restored in 2-3 weeks.
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The results are shown in Fig. 60. The pair lobe was then irradiated and measurements 

were done to control the state o f the tissue before irradiation, as well as before and after 

each dose.

If one samples the real part of impedance Z ’ = Re (Z) in time, at a fixed frequency 

(f=  1 Hz), the following time dependence is suggested by the data:

with Z„' = 9800 Q, A = 2300 Q and t  = 1750 s. Since the time constant’ of this 

’relaxation’ process occurring in the tissue right after excision, is about 30 min, great care 

has to be taken in the data analysis, in order to remove any such trend, if present. In many 

of our experiments, the irradiation occurred a few hours after excision, during which the 

tissue was preserved in a Krebs buffer fluid, refrigerated at about 4-5°C.

The changes reported for freshly excised tissue (both liver and kidney) are 

consistent with data from the literature [72]: changes are pronounced in the low- 

frequency domain and P dispersion progressively declines hours after excision; shortly 

after excision a marked decrease in the conductivity was reported in several tissues 

(associated with the swelling of the cells due to ischemia) and over longer periods an 

increase in the conductivity was observed (explained by membrane breakdown). 

Surowiec [77] reports on measurements in the domain 20 kHz-100 MHz on liver and 

kidney. For liver, the relative permittivity does not change within the first 10 h following 

death. The relaxation time, relatively long for kidney compared with liver, decreases with 

time.

(91)
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RG. 61. Impedance spectra for irradiated liver samples. The last four are two sets of two 
measurements taken 18 h and respectively 23 h later. In b) a zoom of Z ’ = Z ’(f) is shown 

to point out the small immediate radiation induced changes in impedance. The time of the 
12 measurements is: 0,973, 1524,2137,3390,3924,4420,5555,57600,58320,82800

and 84180 s.
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The impedance spectra obtained after three irradiations, with controls taken before and 

after irradiations, are shown in Figure 61. After three doses of radiation (each 11.1 Gy), 

no impedance changes were observed immediately after each irradiation. Later changes 

were also assessed but due to the greater sensitivity of the liver to the lack of tissue 

perfusion respectively conclusions as to whether these are radiation-induced changes will 

be avoided. There are numerous dielectric studies of the liver, one of the most recent by 

Raicu et al. [76] in which a two shell model is used for the cell, nucleus and mitochondria 

measured in a frequency domain corresponding to the p dispersion.

12800-,

E
o  12700-

So' 
ir
ii

N
13000-1

= Irradction

12500-
30 40 60 80 

Time (min)
100

- i—
120

“ 1
140

RG. 62. Magnitude variation of Z’= Re(Z) during irradiation. The time of irradiation is 
shown with an arrow. The continuous curve shows the most probable variation of T

without irradiation.

It is interesting to observe that even though the magnitude of the changes in the 

real part of the impedance at low frequency (f = 10 Hz), are small, there is an remarkable
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temporal pattern associated with decreases right after the irradiation with 999 MU 

(Monitor Units, about 11 Gy) followed by a ’recovery’ sequence (see Fig. 62). This 

feature is also observed at other low frequencies and is preserved by the data set 

reconstructed in the extended frequency domain using the fitted parameters of the 

model.For fitting the data presented in Figure 61 we chose an equivalent circuit capable 

of mimicking the response of the system in the frequency domain investigated. At low 

frequency diffusion is expected to occur and given the fractality of the liver structure we 

used a Generalized Finite Warburg element (GFW). This is in fact the generalization or 

the extension of another more common element, the Finite-Length Warburg (FLW). The 

FLW is the solution of the one-dimensional diffusion equation of a particle, which is 

completely analogous to wave transmission in a fmite-length RC transmission line. In the 

diffusion interpretation Ws-T = L2/D, with L being the effective diffusion thickness, and 

D the effective diffusion coefficient of the particle). The difference, from a formal point 

of view, is the continuously varying exponent Ws-Phi (0 < Ws-Phi < I) instead of the 

fixed value Ws-Phi = 0.5 for the FLW. The impedance Z of this element is described by 

the equation:

ta n h fto r)” 1
z ( « ) - «  , . \ . J  <92>(uoT)

where /?, T and Phi are the fit parameters of the element: Ws-R, Ws-T and Ws-Phi. At 

very low frequencies, Z’approaches Ws-R and Z” goes to zero.

FIG. 63. Equivalent circuit for fitting the liver data.
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The following graphs represent the time evolution of the model parameters for both 

irradiated and non-irradiated samples. The horizontal axis Index’ refers to the 

chronological order, so is in fact a time axis. The last two measurements, for the non- 

irradiated samples and the last four for the irradiated ones are taken at much longer times.

FIG. 64. Representation of the Q  and Ws-R parameters of the model. The index order is 
identical with that of the data presented in FIG. 61 and the data recorded immediately 

after irradiation is marked with an arrow.

and therefore their position in time is not proportional with their index. However, since a 

logarithmic representation would not have been suitable and a broken axis too 

cumbersome to reproduce in all the graphs, we decided to represent only their 

chronological order. Equal doses of 11.1 Gy were delivered just before measurements 

number two, five and eight (the arrows in Figure 64)
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FIG. 65. Representation of the Ws-P and Ws-T parameters of the model. The index order 

is identical with that of the data presented in RG. 61
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FIG. 66. Representation of the Ci„f and Rj„f parameters of the model. The index order is 
identical with that of the data presented in Figure 61.

The graphs of C| and W-R, in Figure 64, representing the capacitance and membrane 

resistance, showed very little change during the irradiation session. Compared with the 

time evolution of the same parameters for the excised tissue samples, we notice an
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increase of the capacitance, as well as a decrease of the membrane conductivity. As 

Bonincontro [78] and others have show, the apoptotic death induced by free radical attack 

is correlated by a decrease of membrane conductivity, suggesting that one of the early 

events in the triggering of the apoptosis is an overall reduction o f plasma membrane 

function. It is interesting to point out that even though the plasma membrane involvement 

in the events leading to mutagenesis or DNA repair, is not fully understood, recent 

studies [79] showed that membrane potassium K+ currents, activated by ionizing 

radiation, play a significant role in mutagenesis. The kinetics of the current induction is 

very rapid, occurring in few minutes after irradiation, with a relaxation time on the order 

of minutes. The mechanism of K+ current activation was proven to be due to free radicals 

[80].

In [81] a study of ischemia induced disturbances in rat liver was conducted using 

electrical impedance measurements. Their model emphasized three elements: the 

extracellular resistance Re, the intracellular resistance R; and the cell membrane 

capacitance Cm. The Re value increased rapidly after excision (reaching a peak after 13 

min at 36 °C), then decreases slowly, becoming constant after about 3 hours. The Rj 

decreased in an early stage, followed by no change and increase after approximately 4 

hours. The Cm showed a similar pattern with Re. The increase in Re was probably due to 

an decrease of the volume of the extracellular fluid, a consequence of cell swelling and 

the onset of oncosis, which also explains the increase of Cm. The timing in the decrease 

of Cm is correlated with the increase in Rj, in a similar manner in which Ci is correlated 

with W-R, showing that cell lysis proceeds and that the flow of extracellular fluid into the 

cell begins at this time.

To conclude the section on liver tissue, we can state that little change in 

impedance occurred as result of irradiation. All parameters of the model reflect this trend 

for the first 8 measurements. Caution have to be exerted in the interpretation of the last 

four measurements because they reflect changes occurring in the tissue at very long times 

compared with those related to the monitoring during the irradiation session. Their 

importance is to provide a baseline for what supposedly represents necrosis and to allow 

a visual interpolation of the model parameters for the non-irradiated tissue at longer 

times.
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Lung tissue

Lungs are sponge-like structures containing about 300 million alveoli. With a 

surface of about 80 m2, only about 10% of the lung is occupied by solid tissue, whereas 

the remainder is filled with air and blood. Anatomically, most of the alveolar wall is 

comprised of the capillary. Epithelial cells normally cover the entire surface of the 

alveolus. There are 2 basic types of cells: Type I (Membranous) and Type II (Granular) 

pneumocytes. The first ones cover about 95% of the surface area of the alveolar wall. 

Type I cells cannot regenerate and, when injured, fluid exudates and collects in airspaces. 

The granular pneumocytes cover about 3% of the alveolar surface but account for 60% of 

the epithelial cells, and are capable of regeneration and replacement of type I cells after 

injury.

The structure of lungs (bronchioles trees) can be modeled as a fat fractal [82] 

obtained by ballistic aggregation clustering. Fat fractals are not self-similar structures! 

When the volume of a fat fractal structure enclosed in a sphere of radius r  is calculated, it 

follows a power law with an exponent that can be regarded as a quantity characterizing 

the scaling properties of the structure:

V(l)U  V(0)+Ar*, (93)

where A is a constant and P the exponent quantifying the fractal properties.

Fractality is precisely the reason for which, from a dielectric point of view, the 

lung is among the few tissues exhibiting only Constant Phase Angle (CPA)-type 

dispersions [83]. Dissado [39] pointed out that CPA elements are likely to reflect 

hierarchically organized structures. Models leading to CPA elements are infinite 

networks of resistors and capacitors or charge transport in disordered systems.

The CPA frequency dependence is given by [83]:

£=£_ + £“ r 1'^  , (94)
2 o>

where P (with values between 0 and 1) is a parameter depending upon the specific 

relaxation mechanism involved and x is the characteristic relaxation time.
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As far as radiation induced effects are concerned, two are well known: radiation 

pneumonitis and lung fibrosis. The first signs of early lung changes are seen almost 

immediately after irradiation. The reaction peaks after 5 to 6 months, then settles partially 

before 9-10 months. After about 9-10 months, the late changes become manifest and 

these are stable in most cases. A response begins almost immediately after the onset of 

acute lung injury in an attempt to repair the damage done to the alveolar wall. 

Inflammatory cell accumulation and the entry of plasma into the airspaces alter the 

alveolar microenvironment.

The radiation-induced effects on lung tissue were studied on 7 pairs of lungs, 

harvested from healthy rats used in another experiments at EVMS. After excision, the 

tissue was kept on dry ice temperatures, suspended in Krebs buffer. During the 

irradiation, the lung samples were given 3 doses of 5.3 Gy, 6 MV photon beam. The 

effect of the excision on non-irradiated samples was studied but we had problems 

comparing different samples between them. The lungs, even for small animals were 

larger than the sample holder, so we had to cut smaller pieces. Whether it was the cut 

through the lung lobe or simply the fractal behavior of the lung structure, it is still an 

open problem, but even for samples obtained from the same lung, we had problems 

normalizing the impedance measurements. These problems occurred only for lung and 

this is the reason for which results are only presented for irradiated lung tissue. A large 

number of controls were taken during the irradiation session, trying to compensate for the 

lack of the excision study.

The dielectric data gathered from literature is shown in Figure 67, below and a 

table with the values of permittivity and conductivity for the frequency domain of interest 

for us is presented in Appendix B. It is interesting to notice that even though there are no 

experimental data reported at frequencies less than 10 kHz, the crude Cole-Cole model 

used to model the data shows a low frequency dispersion, well evidenced in our study.
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FIG. 67. Dielectric data on lung tissue gathered from literature [71].

In Fig. 68 and 69 are presented our primary results obtained on lung tissue. Eleven sets 

of measurements were carried out to monitor the response o f the tissue during the 

irradiation session. The legend refers to c l-c l 1 as control measurements before or after 

irradiation, while the measurements taken immediately after the three irradiations - three 

equal doses, each of 5.3 Gy, photon beam of 6 MV - are labeled with the roman numbers 

I, II and m . After the irradiation session, the tissue was kept in the same conditions and 

monitored for another 24 h to assess any changes occurring as a result o f the irradiation. 

All measurements were carried out at constant temperature T = 20.3 °C, with a four Pt 

electrode configuration, in a constant potential mode (V = 10 mV) with balancing of the 

source after each measurement In Fig. 68 are presented the three measurements made at 

later times, together with the three measurements taken after each radiation dose was 

received. The legend is self-explanatory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

7000 -1500

6000

-1000

5000

4000

-500

3000 lirraciatfon  
c10 
cl 1

2000
10? 10* 1<F 1tf10' 10*

Frequency (hfc)

FIG. 68. Impedance measurements on lung tissue. All measurement are shown

The real part of impedance, Z \ displays a steady increase during the irradiation session. 

For easier identification, the measurements taken right after irradiation are shown with a 

dotted line. In the frequency dependence of Z” we can guess the existence o f a second, 

broad dispersion at larger frequencies, not entirely covered by our measurements. The 

model utilized allowed us not only to perfectly fit the response in the domain from 50 

mHz to 1 MHz, but to completely identify this second dispersion by extending the 

frequency domain up to 100 MHz. In Figure 69 is shown the impedance response 

immediately after irradiation, together with three other measurements taken more than 10 

hours later.
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RG. 69. Impedance measurements on lung tissue. Data sets taken during the irradiation 
session are shown for comparison with the three later measurements.

For reasons already discussed, related to the fractality o f the lung structure, the 

impedance data for this tissue was fit with an equivalent circuit containing two CPA 

elements, each modeling one of the two dispersions that can be guessed in the impedance

spectra:

no ri

RG. 70. Equivalent circuit used for fitting the lung data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

The frequency dependence of a Constant Phase Element (CPE) is given by:

(95)

where T  and P are the parameters of the CPE. If P equals I than the equation is identical 

to that of a capacitor (a capacitor is, in fact, a constant phase element - one with a 

constant phase angle of 90 degrees). If P equals 0.5, a 45° degree line is produced on the 

Complex-Plane graph. When a CPE is placed in parallel to a resistor, a Cole-Element 

(depressed semi-circie) is produced. Often a CPE is used in a model in place of a 

capacitor to compensate for non-homogeneity in the system. For example, a rough or 

porous surface can cause a double-layer capacitance to appear as a constant phase 

element with a P value between 0.9 and 1. A CPE with a P value of 0.5 can be used to 

produce an Infinite Length Warburg element. A Warburg element occurs when charge 

carriers diffuse through a material. Lower frequencies correspond to diffusion deeper into 

the material. If the material is thin, low frequencies will penetrate the entire thickness, 

creating a Finite Length Warburg element. If the material is thick enough so that the 

lowest frequencies applied do not fully penetrate the layer, it must be interpreted as 

infinite.

To check how well the equivalent circuit describes the response of the real 

system, we performed a fit for the parameters of the circuit, using the data set c l . The 

non-linear fit is simultaneously done on both the real and imaginary part of Z, and the 

data is weighted, as suggested by MacDonald [84] by normalizing each point to its 

magnitude.

The results of the fitting procedure are shown in Fig. 71; the frequency domain 

for the fit curve being has been extended down to 1 mHz and up to 100 MHz, in order to 

check if the circuit response in physically meaningful (if a dispersion-like response 

occurs, if Z’ becomes constant at very low frequencies and Z” tends to zero).
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FIG. 71. Data and fitted impedance spectrum for c I data set. The contribution of the two 
CPE elements (at low and high frequency) is shown separately.

Two dispersions are clearly evidenced by the analysis shown in Fig. 71, centered 

at f = 6.7 kHz for the low frequency dispersion and f  = 1047.1 kHz, the high frequency 

one. The parameters P of the two CPEs are 0.71 and 0.49, respectively, showing a 

broader low frequency dispersion. The high frequency dispersion peak can be assigned to 

an interfacial Maxwell-Wagner mechanism. The low frequency cannot be attributed a 

priori to a single tissue component or single process occurring in the tissue, but taking the 

frequency as criteria, it is definitely involving the a  dispersion mechanisms.

The next step in our analysis was to decompose and plot the two dispersions for 

the first four measurements, including the response after the first radiation dose.
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FIG. 72. The evolution of the two dispersion peaks during the first 4 measurements.

Both the a  and (3 dispersion peaks seems to increase in magnitude before the first 

irradiation. Curiously enough, it is only the low frequency response, which seems to be 

stopped from increasing, in both Z’ and Z” coordinates. No changes in the characteristic 

frequency can be detected at this stage.

The same type of analysis and graphical presentation was completed for all 

samples and all determinations. We found relevant the plot o f the first irradiation and its 

controls, before and after irradiation, together with measurements of the lung samples at 

longer time s after the irradiation (13 to 19 hours), shown in Fig. 73. For the low 

frequency dispersion, Z’ increases at smaller and smaller rates during the irradiation, 

without a change of the characteristic frequency. After 13 hours, drops to values smaller 

than the initial control, just to reach, 6 hours later an increased value and a ten fold 

increase of the characteristic frequency.
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'"■*

-500

FIG. 73. Evolution of the two CPE dispersions after the irradiation. In a) are shown both 
Z’ and Z" frequency dependence of the low frequency dispersion; b) similar plots for the

high frequency dispersion.
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The high frequency behavior is a bit different at longer times. During the irradiation 

session, no frequency change and only slight changes occurred in the magnitude of Z \  

After 13 h, Z’ is increasing noticeable, to drop after other six hours to values smaller than 

the initial control c l. The initial increase in Z’ seems associated with a decrease of the 

peak frequency (from 1047 kHz to 560 kHz), while the final drop is associated with an 

increase from 1047 kHz to 1350 kHz.

Continuing the data analysis, the whole batch of data acquired during and after 

irradiation of samples, was fitted with the equivalent circuit from Fig. 70. The parameter 

values are presented graphically in Fig. 74-76. The index in the figures refers to the 

chronological order in which the data sets were acquired, with the last 3 taken at longer 

times after the irradiation. The data sets acquired right after the irradiations are marked 

with an arrow.
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FIG. 74. Comparative evolutions of R<> and Ri of the equivalent circuit modeling the 
impedance response of lung tissue to radiation injury

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134

0 2 6 t2 «4 6 « U

a s-

Q ffl-

ft74

6 s
Index

10 12o 2 4 14

FIG. 75. Comparative evolutions of CPE-Phi elements of the equivalent circuit modeling 
the impedance response of lung tissue to radiation injury
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FIG. 76. Comparative evolutions o f CPE-T elements of the equivalent circuit modeling 
the impedance response of lung tissue to radiation injury

As we already mentioned, the lung, more then other tissue specimens, shows a very 

powerful fractal character. Because of its relatively large size, we had to use smaller 

pieces than an integral lobe. The problem we encountered was that fact the for different 

tissue sizes, we obtained different conductivities and consequently, different impedances.
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It is known that some of the fractal properties (conductivity included) scales with the 

size, which we think was the major problem in dealing with and comparing among 

samples of different sizes.

Interpreting the model parameters shown above is not easy. The high frequency 

dispersion can be in a straightforward manner related to the membrane resistance and 

capacitance. The decrease of the membrane conductivity (and implicitly its resistivity 

increase) is a known sign of apoptotic death [15]. At the end of this process, necrosis is 

marked by a sudden R| decrease, signaling a membrane breakdown, at least of the cell 

fraction undergoing oncosis. Those two pathways, as described in Chapter II, cannot 

occur totally separated, and even though in radiation-induced effects we are mainly 

interested in apoptosis, our data on excised tissue shows that inflammatory death is part 

of the process. The formation of apoptotic bodies (smaller volumes than the initial cells) 

and swelling are probably the cause of the increased Phi parameter at large times, 

signifying a slight reduction of cell size distribution. The T parameter can be interpreted 

as an average time constant, which implicitly can be related to a membrane capacitance. 

The decrease of T in time during the irradiation session, as well as the drop at late times 

after irradiation can also be related to a reduction of membrane function.

The low frequency dispersion is not that straightforward in interpretation. In its 

discussion on radiation late effects on lungs, Alpen [9] points out that "pneumonitis is the 

result of altered characteristics of the alveolar surface with accompanying changes in 

fluid and gas transport across the alveolar subunit". On the other hand, we know that the 

a  dispersion occurs in connection with surface conductivity and counterion relaxation 

effects. The only drawback in matching the two concepts is the fact the pneumonitis is a 

late effect (onset time from three to six months), while our observations are at very early 

times after the irradiation. We recognize this as an open problem which needs further 

experimental work to be settled. Only long time in-vivo experiments will probably be 

able to validate a relation between the early changes we reported on the low frequency 

dispersion on lung tissue and the possible onset of pneumonitis.
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Heart tissue

The heart is a special muscle, fundamentally different from the skeletal muscles. 

Even though there is no special interest in irradiating the heart (except maybe as a 

concern in breast irradiation), we decided to analyze the radiation induced effects and 

their reflection in the dielectric properties, knowing that these properties are affected in 

some degree by the extracellular ions. The contractility of the heart is triggered by an 

action potential. This is a complex electrical event that involves the movement of ions 

across cell membranes which changes the concentrations of ions within and outside the 

cells, so the permeability of the membrane plays an important role. Since one of our 

working hypotheses is that the membrane itself is a target for radiation-induced changes, 

we decided to experiment with the heart tissue. Structurally, the walls of the heart 

consists of three distinct layers--the epicardium (outer layer), the myocardium (middle 

layer), and the endocardium (inner layer). It is the myocardial layer that causes the heart 

to contract; the bundles of muscle fibers are so arranged as to result in a wringing type of 

movement that efficiently squeezes blood from the heart with each beat. Coronary vessels 

supplying arterial blood to the heart penetrate the epicardium before entering the 

myocardium. This outer layer, or visceral pericardium, consists of a surface of flattened 

epithelial (covering) cells resting upon connective tissue. The myocardium consists of 

interlacing bundles of cardiac muscle fibers possessing the appearance o f striated muscle 

(striped skeletal muscle) with intermittent dark plates crossing the fibers, but these highly 

specialized fibers differ fundamentally from those of skeletal muscle in the arrangement 

of nuclei and in the smaller caliber of the individual fiber. The nuclei are oval and 

situated along the central axis o f the fiber, which may range in size from 12 to 21 

micrometers in diameter. Each fiber consists of a bundle of smaller fibers, called 

myofibrils, each of which passes through the full length of the fiber and is covered by an 

external limiting membrane known as the sarcolemma.

The individual cardiac muscle cells are striped crosswise throughout, with 

alternating dark bands that are opaque to light and with light bands that permit the 

passage of light. Prominent plates of condensed dark bands called intercalated disks, 

crossing the muscle fiber at uneven intervals, are perhaps the most conspicuous features
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unique to cardiac muscle. This is an interesting feature, which given the muscle behavior, 

depending on the angle between the direction of the current and that of the fibers, will 

direct us toward a certain model. The parameters o f the dispersion, from the Cole model,

R — R
expressed in terms of impedance as Z  = R„+----- , are summarized in the

!+ ■ '( / / / ,)  

following table [85]:

TABLE V. Cole model parameters for in vivo muscle tissue impedance measurements

Tissue Ro/R» fc (kHz) a

Muscle II 3.1 ±0.3 

Muscle _L 3.3 ±  0.4 

Myocardium 1.8 ± 0.4

94.9 ± 17.5 

63.6 ± 10.6 

144.2 ± 60.2

0.20 ±0.01 

0.19 ±0.05 

0.29 ±0.04

Data collected from literature [58] is summarized in the Fig. 77:

FIG. 77. Dielectric data on heart muscle, gathered from literature. On the vertical axis are
represented both Er (value) and <J (S/m)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

We have studied a number of 6 rat heart tissue samples. Impedance measurements were 

conducted for both excised and non-irradiated tissue as well as for the irradiated samples. 

As all other tissues, right after excision, the tissue was preserved at 4-5 °C suspended in 

Krebs buffer. Sets of 15 measurements were carried out for the tissue samples analyzed 

in the next section. For irradiated tissue, four doses of 10 Gy each were administered just 

before measurements number 6 ,9 , 12 and 14. A four-electrode technique was used for all 

measurements, with the precautions described in the previous sections, for kidney, liver 

and lung tissues. The samples were analyzed in the potentiostat mode (V=10..25 mV) in a 

frequency range from 50 mHz to I MHz. The starting time of each frequency sweep (from 

high to low frequency) is t = 0,373, 791, 1231, 1771, 3015, 3500, 3974, 4596, 4879,

5299,6516,6822,7557 and 7969 s.

Results of our impedance measurements obtained on heart tissue are shown in Fig. 78.
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FIG. 78. a) Impedance, Z’ and Z” vs. frequency plots on irradiated heart tissue.
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FIG. 78. Impedance. T  and Z” vs. frequency plots on irradiated heart tissue. In b) a zoom
o fZ ’is shown.

An elementary analysis of the complex plot, trying to identify a Cole-Cole response leads 

to the result shown in Figure 79. A second dispersion can be somehow guessed, but we 

did not go to high enough frequencies. The analyzer itself (Solartron 1260) has an upper 

limit of 32 MHz, but the constraint in this case was the interface (Solartron 1194) whose 

limit for high frequencies is only I MHz.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

•4000

-3000

•2000

?ao,

-1000

0

1000
0  1000 2000 3000 4000 5000

Z(ofnt

to* CBrter 26622 
hag. CM enZ££l 
dander; 2977 

-  Deviation: 9L96BB 
Low hlercept 1192.8 
H^iHercepc 4111.6 
Depression Atk̂ k  11.349 
w j u d c  15783 
Estimated Rtctrre): 2918L8 
Estrrated Qfarads); 2.1283B8

j I i I i 1 i I L

FIG. 79. Elementary analysis o f the non-irradiated heart tissue impedance response. The 
semicircle represents the response of a simple Cole element and the deviation at high

frequencies is evident.

We chose to model the impedance response with the circuit shown in Fig. 80, a 

series of two Warburg impedances.

FIG. 80. Equivalent circuit for heart tissue.

Myocardium has a "stringy" look compared to skeletal muscle. Skeletal muscle cells are 

large and lie next to each other in more or less parallel bundles. Cardiac muscle cells are 

small, butted together at their ends, irregularly shaped, and have numerous blood vessels 

between them. The effect is to create a network of fibers rather than a solid phalanx of 

muscle fascicles. The expected phenomenon is high frequency dispersion due to
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interfacial polarization accompanied of low frequency lateral diffusion of counter-ions 

surrounding the membranes. The impedance Z of this element is described by:

(96)
( W )

where R, T  and P are the fit parameters of the element: Ws-R, Ws-T and Ws-P. At very 

low frequencies, Z’ approaches Ws-R and Z” goes to zero. The response due to the two 

elements is shown separately in Fig. 8 1 a) and together, in an extended frequency range 

in Fig. 81 b).
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FIG. 81. a) Separate response of the two Warburg circuits, b) Data and extended fit with
the equivalent circuit

Fitted parameters of the model for the non-irradiated and irradiated samples follow. As in 

other instances we are using the horizontal index axis to arrange the measurements 

chronologically, roughly simulating a time axis. The real times associated with the
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indices 1-15 are: t = 0,373, 791, 1231, 1771, 3015, 3500, 3974,4596, 4879, 5299, 6516,

6822,7557 and 7969 s.
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FIG. 82. Evolution of the Wsl-R and Ws2-R parameters for irradiated and non-irradiated
samples
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FIG. 83. Evolution of the W sl-T and Ws2 -T parameters for irradiated and non-irradiated
samples
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FIG. 84. Evolution of the Ws 1-Phi and Ws2 -Phi parameters for irradiated and non-
irradiated samples.

Some of the model parameters have the property that for the irradiated and non- 

irradiated sample, they appear to diverge even before the first irradiation. The excision 

and the irradiation effects were studied on different samples. Even though they came 

from healthy animals and have similar sizes, the variability of impedance parameters was 

still a problem, especially for non-pair organs like the heart. We would like to stress once 

again that these studies are of importance with respect to changes in impedance and 

impedance based models in the same organism (tissue), after the irradiation, with respect 

to the before situation. We are not seeking to establish any absolute values from which 

the deviation to be interpreted. The study of different tissue samples should only be seen 

in this context as a proof for consistent behavior, with the limits imposed by the 

biological variability.

A particularity of this tissue system is the very tightly cell packaging in a structure 

which has an obvious hierarchical character. Examining the graphs, we can see that the 

radiation induced changes in the R and T parameters of the first Warburg element are 

quite clearly marked. One reason for which they do not appear so well defined in the 

second Warburg element can be simply its relatively reduced contribution to the overall 

response. While from the start we tried to associate the response of this system at low 

frequencies with diffusion across the membrane, the interpretation of each o f the model
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parameters by relation to physical entities in the tissue is difficult. R is obviously a 

resistance in the limit co -> 0 and T is a diffusion related quantity (~L2/D). It seems that 

the first radiation dose is really changing the course of time evolution for all parameters, 

while subsequent irradiation bring little contribution. The reduction of the distance over 

which the diffusion seems to take place, seen in W sl-T, can be explained by proposing a 

mechanism in which the injection of charge and the creation of free radicals leads to an 

increased barrier layer capacitance and a subsequent reduction o f the diffusion length. A 

continuation of such reasoning is given in the next chapter, in which an attempt is made 

to explain all the dispersions measured in the frame a \iniversal’ mechanism.
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CHAPTER VII 

CONCLUSIONS

This chapter is devoted to the ambitious and complex task of proposing a unitary 

interpretation of the data presented and analyzed in the precedent chapter. The difficulty 

comes from a number of sources:

• The theory of dielectric phenomena at low frequencies (LFD), our domain of 

interest, is itself a work in progress, with quite some debate on what the involved 

mechanisms are and how they should be presented in a unified frame (see the 

’universal’ dielectric dispersion - Jonscher). We will attempt to give a consistent 

explanation for the data collected, involving hopping conductivity in fractal 

systems.

• When the LFD measurements have as a subject biological tissue, the model’s 

degree of complexity increases dramatically; the cell is a complex structure and 

an active, dynamic environment. A multitude of processes are taking place and 

the challenge is to restrict the analysis to those that are relevant for our goal.

• Irradiation of semiconductors and non-polar liquids [86] is rarely studied from a 

dielectric point of view. The first study of which we are aware on the dielectric 

properties [87], of irradiated tissues appeared after our first proposal submission 

to NIH, in 1998, and it is emphasizing only the long term effects in muscle, thus 

likely connecting necrosis with changes in conductivity and permittivity.

Our final goal is to be able not only to understand and quantify the dielectric changes in 

irradiated tissues but to use these changes in order to assess, both qualitatively and 

quantitatively the type o f death occurring as a results of irradiation. As seen in Chapter Q 

- Cell death, what we are looking for, are ways (or markers) for discriminating between 

oncosis and apoptosis, this being the focus of much of the today’s search for new cancer 

treatments. Inducing apoptosis in tumor cells is the final goal of many chemotherapies, so 

if we can prove that the impedance measurements can detect the subtle signs of 

apoptosis, it is likely the method can be applied in a much larger context then radiation 

therapy.
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One of the dogmas in the application of ionizing radiation to the cancer treatment 

is that the killing of the cells occurs as result of direct damage to the DNA. There is now 

convincing evidence that a significant target for radiation is also the plasma membrane 

[87]. Relatively recently, proof was brought [88] that extranuclear (cytoplasmic) and 

extracellular targets, in a free radical mediated process, can also lead to radiation-induced 

damage in living matter. The so-called bystander effect [89, 90] refers to the killing 

effect, on non-irradiated cells, of the medium in which irradiated cells were incubated. In 

was also evidenced, as another contributing mechanism, that cell-cell communication 

over the extracellular space triggers various kinds of intracellular signal transduction 

processes in the receptors cells. Little is known about the nature of the signaling 

molecules. It is though interesting to point out (and, in the same time, to move toward 

pathways which might be significant for cell’s dielectric properties) that even though the 

plasma membrane involvement in the events leading to mutagenesis or DNA repair, is 

not fully understood, recent studies [79] showed that membrane potassium K+ currents, 

activated by ionizing radiation, play a significant role in mutagenesis24. The kinetics of 

the current induction is very rapid, occurring in a few minutes after irradiation, with a 

relaxation time of the order of minutes. The mechanism of K+ current activation was 

proven to be due to free radicals. Consistent with our findings, apoptotic death induced 

by free radical attack is correlated with a decrease of membrane conductivity [IS], 

suggesting that one of the early events in the triggering of apoptosis is an overall 

reduction o f plasma membrane function.

In general, changes in the dielectric properties of the membrane are reported in 

literature as occurring early after irradiation [89]. The electrical capacitance of lipid 

membranes may increase [90] by up to 50% on exposure to ionizing radiation. This is the 

consequence of lipid peroxidation induced by primary or secondary radicals of water 

radiolysis in the presence of oxygen. The polar products of this process give rise to an 

increase in the dielectric constant of the membrane. This in turn leads to the observed 

increase in the membrane capacitance.

Before discussing dielectric properties further, we will give an overview of 

possible dielectric responses:

~4the process leading to a mutation, a change of the hereditary information, an alteration of genes.
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FIG. 85. A representation of different types of dielectric responses. The two upper curves 
of each representation are the plots of the real and imaginary components o f the 

susceptibility (in logarithmic scale). The lower curve is the complex plot of the same two 
quantities. In A is represented the Debye mechanism, the response (almost inexistent) of 

a collection of non-interacting dipoles. B, usually occurring in liquids, implies short, 
nearest-neighbor interactions, such the both e’and e” are proportional with 0 )'n (n<0.3); C 

represents also a response in a system with the same type o f interactions as B, but 
characterizing the low frequency dispersion with n -  0.5; in D a higher frequency 
response is shown, typically observed in polymers, n >0.6; in E, the mechanism of 

relaxation is due to hoping charges and the interactions are o f the ’many-body’ type. 
Characteristic to ionic conductors or high-density carrier systems, n<0.3 (adapted from

[91])
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In analyzing and interpreting dielectric data, one has a number of choices, based 

on different parameters and strategies:

• a phenomenological approach, often obtained by fitting £ =£ (f).

•  an equivalent circuit model. This approach was taken in Chapter VI, where each 

tissue was discussed based on a model. Has the advantage that parameters can be 

interpreted if the model is physically interpretable.

• a direct interpretation of the primary data: Z, M, R^hiv or C^iv as functions of 

frequency.

• an interpretation of the tissue system as a fractal or disordered system. The 

electrical excitation, conduction and polarisation can then be interpreted as 

random walks, variation of trapping and release time of the mobile charge 

carriers, changes in the conductive bonds density, etc.

Each tissue type was previously discussed based on an equivalent circuit model. We are 

giving now another point of view; a phenomenological approach, recently proposed by 

Raicu [92]. None of the Debye-type models (including Cole-Cole and Cole-Davidson 

models) or the "universal" one, proposed by Jonscher [93], and represented by the 

fractional power laws, are able to completely describe the dielectric response of the 

biological tissue. The broadening of the Debye dispersion peaks has been related to some 

distribution of the relaxation times, expressed by the a  coefficient in the Cole-Cole 

model:

<97>l+(lQK)

respectively |3 in the Cole-Davidson one:

c ' = e - + <98> (1+ian)

Raicu [92] introduces yet another phenomenological expression, combining the Debye- 

type models with the power law (or CPA-type) models:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



149

(99)

where a , /?, y e  [0..1], t  is the characteristic relaxation time, £ 0  and £«, are the limiting

values of the permittivity at low and high frequencies respectively, and a0 is the low 

frequency conductivity. While we can recognize the power laws in the asymptotic 

behavior:

it is certainly difficult to assign any physical meaning to the coefficients. It was recently 

shown [94] that for ionic materials (and biological tissue falls into this category), the 

exponents of the power laws depend on the dimensionality of the conduction pathway. 

Among other models used to describe the frequency dependence of the conductivity - the 

distribution of the energy barriers, the inter-ion interaction or correlated motion - only 

those using percolation systems and random walks in a fractal system achieved power 

law dispersion with exponents depending on dimension. Conductivity is proportional 

with the diffusion constant:

£ - £ _ u  o)'a fo r tu< 2 /r / r , ( 100)

and

e - e ^ U a / ' 1 f o r< y > 2 ^ / r . ( 101)

( 102)

and diffusion can be simulated using random walkers25:

After a long time t, the mean square displacement of all walkers, ( r 2  ̂ is related to the 

diffusion coefficient D as:

25
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D ~ ( r ) l t .  (103)

In a Euclidian lattice, the mean square displacement increases linearly with time( r  ̂  u t ,

and therefore D is constant in time (normal, Fick diffusion). In a fractal lattice the 

diffusion coefficient increases slower than t and the diffusion is said to be anomalous:

( r l )< x f ID" , (104)

where Dw is the fractal dimension of the walker and Dw > 2. For a carrier of charge q  and 

concentration n, the conductivity can be related to the ( r lS} by the equation:

. (105)

However, in spite of numerous attempts to relate the exponents of the power laws to 

some fractal dimensions of the system, no consistent theory exists in present.

In a series of analytical studies using deterministic circuit models, Dissado [95] 

showed that the fractional power law ( £ ' «  e* «  af~K) or the Constant Phase Angle (CPA) 

response occurs because sub-circuits on different levels contribute in self-similar ways to 

the response of the whole hierarchy, stressing the fact that the exponent n carries the 

information about the whole ensemble, the isolation of sub-circuits is impossible and the 

whole has to be represented by a unique frequency dependent circuit element. The tissue 

however, is not a deterministic fractal, the self-similarity is only present on average, and 

thus the fractal is called stochastic.

One of the most elusive phenomena, the dielectric dispersion of biological tissue 

at low frequency, can be thus explained by using the similitude with a percolation system. 

The extracellular path consists mainly of the extra-cellular plasma. Due to cell packing 

(some tissues are more compact than others, for example cardiac muscle is more compact 

than liver tissue) a three dimensional conducting maze is formed by the extracellular 

plasma (for completeness, one should also consider the gap junction network and the
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possible proton conduction in glycocalyx). The tightly packed regions can be considered 

as poorly conducting bonds connecting clusters of cells. It was shown [95] that such 

systems are described by a combination of two fractional power laws, a high-frequency 

response with n>0.5 and a low frequency one n'<0.5. The qualitative explanation is that 

at high frequency, the mobile charges explore the highly connected clusters and the 

exponent n is in some relation with the cluster dimension <//. A critical frequency will 

define the rate at which the charge will jump from one cluster to another. At frequencies 

lower than the critical frequencies, the carriers will explore the weakly conducting bonds. 

An intercluster and intracluster motion are thus separated and each seems to be described 

by one of the two power laws:

y'oc y 'o c ( W f i )  j " '1 a)>Q),.
V 7 '  (106) X'~Z'~{O)/(0cyP 6)<6)c.

An analytical expression for the complex susceptibility is given [96]:

aK
0)C+10) 2*1 l - n , l+ p ;2 -n ; -

Q)C+IQ)
(107)

where 2Ft(...) is the Gaussian hypergeometric function defined by the relation:

] —  * I +  7
rdx =

1 + zx" z ( 6 - a - l )
2^

\  b - a - 1 ,  b - a - I  1 
’ b ’ + b

(108)

The results of our experiments on fresh kidney are shown in Figure 86:
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FIG. 86. Dielectric response of freshly excised kidney tissue. The power law frequency 
dependence of £’(&)) and £"(0 )) (straight lines in log-log representation) are shown. The

tissue was not irradiated.

The exponents of the £’ and £” vs. (D are extracted for the non-irradiated samples and 

presented in the table below (the errors in these coefficients are smaller than 0.002). The 

exponents refer to n and p, discussed in Eq. (106); the only difference between electrical 

susceptibility and permeability is shown in the expression for the real and imaginary part 

1+Z'=e'le0, * ” = £ " •

If these coefficients are related, as discussed before, to the dimensionality of the 

processes governing the a  (at low frequency) f) (high frequency) dispersion, the 

interpretation is clear and straightforward related to the oncotic swelling of the cells 

following excision.
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TABLE VI. The fractional exponents of the power laws describing the dielectric response 
of kidney tissue at high respectively low frequency.

Time £’ Low Freq £’ High Freq e” Low Freq £” High Freq 

_ 0 0.357 0.858 L000 0.780

837 0.348 0.852 1.000 0.777

1539 0.340 0.845 1.000 0.775

4227 0.319 0.832 1.000 0.772

35098 0.284 0252 LQOQ 0.79$

36337 0283 0.746 |0 0 0  0.797

It is interesting to notice, that the same coefficients, this time analyzed from the irradiated 

samples dielectric response, exhibit very little variation: £’ at low frequency is between 

0.295 and 0.290, and e’ at high frequency starts at 0.815 to decrease to 0.787.

Table VO. The fractional exponents of the power laws describing the dielectric response 
of irradiated kidney tissue at low frequency

Type E’ Low Freq £’ High Freq

Control 0.295 0.815

I irradiation 0.292 0.798

Q irradiation 0.290 0.793

m  irradiation 0.293 0.789

IV irradiation 0.294 0.787

Given that the tissues were measured in the same conditions, the lack of morphological 

changes can only be interpreted in the simultaneously presence o f oncosis and apoptosis. 

One can see that in spite of the different slopes that can be attributed to different linear 

portions of these curves, there is much resemblance between them. A mention on the 

numerical values on these graphs is worthwhile. The permitivity is extracted from the 

impedance data by using an additional parameter, the capacitance o f the empty 

measurement cell C0. Since we were only interested in relative values, this parameter was
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set to zero.

UVER TISSUE KENEY TISSUE

iff*

Cu 10'UJ

FIG. 87. Permitivity, Re(e) vs. frequency for liver and kidney tissue

However, for our measurement cell, the capacitance was about 10'12 F, which means that 

all the values represented on these graphs should be shifted with 1012. For a better 

comparison all four tissue types are shown, in the next graph (Fig. 88), for both, Re(£) 

and Im(e).

As we can see from these graphs, the tissues, when examined in terms of electric 

permitivity vs. frequency, exhibit a Universal’ response. The disadvantage of such 

representation is that all the intricacies of the dielectric phenomena are ’compressed’ in 

one number, the slope of the straight line representing in fact the exponent of the 

frequency from the proportionality e’ ~ e" -  If we would be able to give a precise 

meaning to this exponent and to detect any changes, that would turn into an advantage. 

Right now, we consider that the modeling of tissues with an equivalent circuit and the 

impedance analysis of the data gives a more rich and interpretable information.
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FIG. 88. Representation of e =Re(e) and e"=Im(e) versus frequency, a \iniversal’ response
of tissues.

To conclude our study we can state, based on our experimental data on excised 

tissue, that impedance measurements in the frequency domain from 50 mHz to 1 MHz 

seems to have the potential to distinguish between different death mechanisms at the 

level of the tissue. The extent of what we detected as apoptosis or oncosis still remains to 

be confirmed by additional experiments. The study also proves the existence of a 

correlation between the known radiosensitivity o f a certain tissue and the magnitude of 

the radiation-induced impedance changes (see for example in Chapter VI, liver vs. 

kidney). Without doubt, a very interesting feature seems to be the examination of the 

transient changes at the level o f membrane, which according to recent studies, might 

precede the onset of apoptosis.

The use of electrodes, which might exhibit a lack of spatial sensitivity in a real 

application, might be very conveniently replaced by MRI and simultaneous current
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injection, which would allow the imaging of conductivity with submillimeter resolution. 

What our goal was in this study, was to prove that electrical impedance can represent a 

sensitive marker to subtle radiation-induced changes. We believe that there is an 

enormous potential for such a method to become a routine determination during the 

radiation treatment.
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APPENDIX A 

DEPTH DOSE AND ISODOSE DISTRIBUTIONS FOR 6 MV 

PHOTONS.

X| rel. dose

6 MV Photons 
5cm * 5cm

SSD 100cm 
smoothed

too

0 5 10 15 20

Figure 89 A. Plot of absorbed dose in water as a function of depth for 5MV photons in a
(5 x 5) cm2 field.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



163

[%] rel. dose

6 MV Photons 
10cm x 10cm

S S D : 100cm  
smoothed

100

-12 -10

Figure 90A. Depth dose variation across the field for 6 MV photons, SSD=lOOcm, field
of (10 x 10) cm2, depth of 3 cm.
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Figure 9 1A. Isodose distribution for 6 MV photons in a (10 x 10) cm2 field, SSD=100 cm
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Figure 92A. An artist’s view of the Clinac 600 series. 1-electron gun characterized by a 
circular electron emitting surface; 2- standing wave generator, 3-magnetron, generates 

the high power microwaves used to accelerate electrons in the wave guide; 4-port 
circulator, damps the reflected microwaves into a passive waterload, in order to protect 

the magnetron; 5-photon field flattener, 6-asymmetric jaws; 7-pair of two separately 
sealed ionization chambers for monitoring of dose rate, integrated dose and field

symmetry.
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Figure 93 A. The Clinac 1800 at Virginia Beach General Hospital. Right under the 
treatment head, the white parallelepiped is the thermal case of the electrolytic cell. On the 

treatment couch can me seen the Solartron Frequency Analyzer 1260, the Dielectric 
Interface 1294, the home made thermostat, other devices, the laptop doing the data 

acquisition and the large monitor replacing the LCD screen.
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APPENDIX B 

PARAMETRIC MODEL AND TABLES

A parametric model, based on data gathered from literature, was created by Gabriel et al.

[58]. In this model the complex permittivity is considered to be the sum of up to six 

Debye or Cole-Cole terms:

£(ft> )=£(oo) +  £
+ { ia t tn j  ' ieoe0

Based on this model, Andreuccetti et al. developed an application [59] where the 

calculations can be carried out for a specific tissue, for specific conditions (frequency 

range). The output of the program which models permittivity and conductivity for the 

tissue studied in our experiments, as function of frequency, are shown in Table II-VI.

The parameters of the model for n = 4 are shown in the table below:

Table VIIIB. Numerical values of the parametric model for blood, kidney, heart, lung,
liver and muscle.

Tissue Type \
Parameter e W A, MPS) a. A: tj(ns) Cfe a

Blood 4.000 56.00 8.377 0.100 5200 132.629 0.100 0.700
Heart 4.000 50.00 7.958 0.100 1200 159.155 0.050 0.050
Kidney 4.000 47.00 7.958 0.100 3500 198.944 0.220 0.050
Liver 4.000 39.00 8.842 0.100 6000 530.516 0.200 0.020
Lung (Deflated) 4.000 45.00 7.958 0.100 1000 159.155 0.100 0.200
Lung (Inflated) 2.500 18.00 7.958 0.100 500 63.662 0.100 0.030
Muscle 4.000 50.00 7.234 0.100 7000 353.678 0.100 0.200

Tissue Type 
Parameter

\
Aa M p s) «a t»(m s) 0 4

Blood O.OOE+O 159.155 0.200 0.00E+0 15.915 0.000
Heart 4.50E+5 72.343 0.220 2.50E+7 4.547 0.000
Kidney 2.50E+5 79.577 0.220 3.00E+7 4.547 0.000
Liver 5.00E+4 22.736 0.200 3.00E+7 15.915 0.050
Lung (Deflated) 5.00E+5 159.155 0.200 1.00E+7 15.915 0.000
Lung (Inflated) 2.50E+5 159.155 0.200 4.00E+7 7.958 0.000
Muscle 1.20E+6 318.310 0.100 250E+7 2.274 0.000
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Table IXB. Dielectric parameters for blood in the frequency domain from 10 Hz to 10
MHz.

Frequency Conductivity Relative Loss Wavelength Penetration
[Hz] [S/m] permittivity tangent [m] depth [m]

10 0.7 5260 239220 11952 190.22

15.849 0.7 5260 150940 949.39 151.1

25.119 0.7 5259.9 95235 754.13 120.02

39.811 0.7 5259.9 60090 599.02 95.339

63.096 0.7 5259.9 37914 475.82 75.731

100 0.7 5259.8 23923 377.95 60.156

158.49 0.7 5259.7 15094 300.21 47.784

251.19 0.7 5259.6 9524.1 238.46 37.957

398.11 0.7 5259.4 6009.6 189.41 30.151

630.96 0.7 5259.1 3792 150.45 23.951

1000 0.7 5258.6 2392.8 119.5 19.026

1584.9 0.7 5257.9 1510 94.908 15.115

2511.9 0.7 5256.8 95193 75.373 12.009

3981.1 0.70001 5255.1 601.46 59.853 9.5417

6309.6 0.70002 5252.4 379.69 47319 7.5829

10000 0.70004 5248.2 239.77 37.716 6.0278

15849 0.70009 5241.4 151.49 29.922 4.7937

25119 0.70022 5230.3 95.805 23.72 3.8147

39811 0.70052 5211.6 60.692 18.78 3.0387

63096 0.70124 5178.9 38376 14.84 2.4239

100000 0.70292 5120 24.678 11.688 1.9371

158490 0.7068 5011.5 15.996 9.1576 1.5514

251190 0.71546 4810.7 10.643 7.1175 1.2442

398110 0.73363 4450 7.4437 5.4723 0.99578

630960 0.76785 3856.5 5.6723 4.1617 0.78934

le+06 0.82211 3026.3 4.8831 3.1504 0.61449

1.5849e+06 0.8906 21063 4.7957 23999 0.46982

2.5119e+06 0.95897 1318.6 5.2044 1.8519 0.35677

3.981 le+06 1.0164 777.75 5.9006 1.4449 0.27222

6.3096e+06 1.0612 456.88 6.6172 1.1335 0.2097

le+07 1.0967 280.03 7.04 0.88962 0.16312
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Table XB. Dielectric parameters for heart tissue in the frequency domain from 10 Hz to
10 MHz.

Frequency Conductivity Relative Loss Wavelength Penetration

[Hz] [S/m] permittivity tangent [m] depth [m)

10 0.053677 13562e+07 4.095 3824.6 775.24

15.849 0.05829 lll94e+07 3.1193 2810.1 613.04

25.119 0.066566 1.6948e+07 2.8107 2054.3 463.34

39.811 0.077496 t.l344e+07 3.0846 1535.1 336.04

63.096 0.087314 6.3236e+06 3.9337 1188 243.16

too 0.093565 3.1637e+06 5.3162 941.52 180.66

158.49 0.096851 U894e+06 6.9111 750.99 138.06

251.19 0.098693 890070 7.9349 596.43 107.64

398.11 0.10029 585780 7.7302 469.2 84.958

630.96 0.10254 440940 6.6254 364.66 67.455

1000 0.1063 352850 5.4152 279.81 53.509

1584.9 0.11227 280860 4.5335 212.5 41093

2511.9 0.12068 213770 4.04 160.68 32.675

3981.1 0.13106 153690 3.8505 121.75 25.053

6309.6 0.1425 105290 3.8556 92.765 19.082

10000 0.15421 70054 3.957 71.06 14.523

15849 0.16587 46157 4.0758 54.62 11.084

25119 0.17752 30566 4.1561 42.035 8.4908

39811 0.18939 20534 4.1645 32.335 6.5282

63096 0.20178 14064 4.0874 24.828 5.0348

100000 0.21511 9845.8 3.9272 19.009 3.8923

158490 0.22992 7048.7 3.6995 14.495 3.0132

251190 0.24714 5147.6 3.4358 10.995 2.3318

398110 0.26827 3799.9 3.1877 8.292 1.7971

630960 0.295 2780.4 3.0227 6.2301 1.3724

le+06 0.32753 19673 2.9926 4.6892 1.0363

1.5849e+06 0.36303 1335.4 3.0832 3.5545 0.77821

2.5119e+06 0.39811 888.12 3.2078 2.7124 0.58676

3.981 le+06 0.432 596.28 3.2713 2.0743 0.44613

6.3096e+06 0.46594 411.45 3.2262 1.5833 0.34192

le+07 0.50137 293.47 3.071 1.2034 0.26379
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Table XIB. Dielectric parameters for kidney tissue in the frequency domain from 10 Hz
to 10 MHz.

Frequency Conductivity Relative Loss Wavelength Penetration

[Hz] [S/m] permittivity tangent [m] depth [m]

10 0.05441 2.7988e+07 3.4945 37223 785.77

15.849 0.059944 2.5147e+07 2.7036 27073 618.78

25.119 0.069868 2.0053e+07 2.4934 1963.1 461.94

39.811 0.082971 l.3329e+07 2.8107 1461.6 329.66

63.096 0.094723 7.3068e+06 3.6933 1131.5 23534

100 0.10216 3.5181e+06 5.2198 899.51 173.19

158.49 0.10596 1.6339e+06 7.3551 721.1 131.43

251.19 0.10786 802300 9.6206 576.81 101.84

398.11 0.10913 448960 10.975 458.42 79.91

630.96 0.11057 293000 10.751 361.42 63.12

1000 0.11274 212900 93189 282.61 49.951

1584.9 0.11604 160000 8.226 219.46 39.431

2511.9 0.12054 117870 7.3183 169.76 30.962

3981.1 0.12595 83493 6.8111 131.26 24.182

6309.6 0.13179 57254 6.5579 101.64 18.83

10000 0.13774 38748 6.3898 78.817 14.66

15849 0.14369 26412 6.1701 61.129 11.433

25119 0.14973 18419 5.8171 47337 8.9395

39811 0.15607 13267 53118 36333 7.0112

63096 0.16309 9905.7 4.6905 28.044 5.5152

100000 0.17134 7651.6 4.0252 21.363 4.3481

158490 0.18179 6067.2 3.3983 16.114 3.428

251190 0.19596 4870.7 18791 11021 16898

398110 0.21582 3884.7 23085 8.8823 10854

630960 0.24314 3017.4 12956 63349 13875

le+06 0.27823 2251.4 2.2215 4.8203 1.1867

1.5849e+06 0.31946 1611.9 12477 33819 0.87757

15119e+06 0.36429 11203 13271 1683 0.64825

3.981 le+06 0.41089 768.96 14127 10208 0.48145

6.3096e+06 0.4587 529.92 1466 13256 0.36046

le+07 030808 371.15 14608 1.1509 0.27216
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Table XIIB. Dielectric parameters for liver in the frequency domain from 10 Hz to 10
MHz.

Frequency Conductivity Relative Loss Wavelength Penetration

[Hzl [S/m] permittivity tangent [m] depth [m]

10 0.027714 1.5056e+07 33087 5175.8 11093

15.849 0.031215 9.2948e+06 3.8089 3948.6 814.72

25.119 0.03406 5.055e+06 4.8218 3084.3 603.13

39.811 0.0359% 2.574e+06 6.3144 24413 454.92

63.096 0.037256 I.2993e+06 8.1691 1940.4 348.93

100 0.03813 678470 10.102 1541.3 270.8

158.49 0.038811 377810 11.651 12213 211.81

251.19 0.039409 228850 12323 965.16 166.58

398.11 0.039991 152000 11.88 759.9 131.55

630.% 0.04062 110150 10306 595.64 104.25

1000 0.04138 85673 8.6821 464.13 82866

1584.9 0.04241 69802 6.8911 358.8 65.99

2511.9 0.043928 57911 5.4283 274.69 52508

3981.1 0.046199 47560 4.386 208.25 41352

6309.6 0.049407 37825 3.7213 156.83 32353

10000 0.053495 28930 33239 117.88 25.237

15849 0.058193 21542 3.0638 88.693 19.456

25119 0.063288 16007 2.8294 66.6% 15.01

39811 0.068906 12133 23643 49.911 11.624

63096 0.075638 9454.4 2.2792 36.997 9.0136

100000 0.084568 7498.9 20272 27.114 6.9407

158490 0.097101 5918.1 1.8609 19.71 5.2469

251190 0.11433 4527.9 1.8069 14.327 3.8681

398110 0.1361 3300.4 1.862 10306 27959

630960 0.16085 22903 20006 7.8041 2.0094

le+06 0.18665 1535.7 21848 5.865 1.4538

1.5849e+06 0.21236 1015.1 23727 4.4407 1.0648

2.5119e+06 0.23779 673.55 23264 33733 0.7899

3.981 le+06 0.2633 454.23 26173 23627 039247

6.3096e+06 0.28943 313.77 26279 1.943 0.44854

le+07 031671 223.12 25516 1.4676 034241
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Table XIIIB. Dielectric parameters for lung in the frequency domain from 10 Hz to 10
MHz.

Frequency Conductivity Relative Loss Wavelength Penetration

[Hzl [S/m] permittivity tangent [ml depth [m|

10 0.20279 5.497le+06 66.312 2203.9 356.1

15.849 0.20399 3.3425e+06 69.219 1746 281.93

25.119 0.20484 l.86e+06 78.807 13855 223.29

39.811 0.20531 1.0807e+06 85.777 1099.7 177.07

63.096 0.2056 724840 80.808 87157 140.6

100 0.20588 567080 65.261 691.61 111.77

158.49 0.20635 489090 47.851 547.22 88.931

251.19 0.20723 436230 33.995 431.9 70.791

398.11 0.20887 383740 24.576 339.8 56.327

630.96 0.21162 321940 18.727 266.46 44.733

1000 0.21567 252050 15.381 208.45 35.402

1584.9 0.22078 183070 13.678 16199 27.906

2511.9 0.22642 124820 12.981 127.59 21.932

3981.1 0.2321 81752 12.819 100.05 17.215

6309.6 0.23759 52691 11846 78559 13514

10000 0.2429 34044 11826 61.711 10.617

15849 0.24816 22305 11618 48.466 8.3491

25119 0.2535 14912 12.166 38.034 6.5714

39811 0.25907 10202 11.467 29.811 5.1763

63096 0.26504 7153.5 10.555 23524 4.0804

100000 0.27161 5145.3 9.4891 18104 3.2187

158490 0.27914 3793.8 8.3452 14.162 25402

251190 0.28825 2855 7.2249 10.969 1004

398110 0.2999 2166.9 6.2493 8.4509 15773

630960 0.31521 16219 55334 6.4813 11347

le+06 0.33438 11705 5.1351 4.9642 0.95879

1.5849e+06 0.35586 806.15 5.0066 3.813 0.74006

15119e+06 0.37743 539.91 5.0026 19407 057085

3.981 le+06 0.39805 36171 4.9551 12725 0.44195

6.3096e+06 0.41799 25057 4.7524 1.7541 0.34403

le+07 0.43799 18052 4.3661 15488 0.2694
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APPENDIX C 

BIOLOGICAL VARIABILITY STUDY

On the biological variability o f the kidney tissue reflected in the key parameters of the 

fresh and irradiated samples.

As already explain in detail in the data analysis section, we tried to alleviate the 

problem of the biological variability by using pair organs (or multiple lobes). Even 

though the kidney tissue used in the measurement on the excised tissue and of the 

radiation-induced effects was harvested from the same animal, we encountered problems 

normalizing or comparing different tissues. Similar problems were encountered for other 

tissues: the heart was particularly difficult as the only unpaired organ studied, but we also 

have problems with lung tissue, who’s dielectric properties seems to scale with its size.

We already emphasized the fact that this study doesn't attempt to establish any absolute 

values in terms of what a normal response (in time or magnitude) of a given tissue would 

be to radiation. Instead, we are trying to And certain patterns, or trends, and then measure 

and interpret the relative changes in the dielectric properties, after the radiation exposure, 

relative to "before".

It was suggested that we would present a study to confirm the trends for a given 

type of tissue (organ) in the presence o f biological variability. Such analysis and 

especially its graphical representation is extremely cumbersome. We are presenting in the 

next four graphs the evolution of two key parameters R| and Q  of the model used for 

kidney (see Figure 48 in Chapter VI), for the freshly excised samples as well as for the 

irradiation with 6 MV photon beam of excised kidney tissue. The samples were collected 

from 7 animals over a time interval of several months. The samples labeled with the same 

number in the non-irradiated and irradiated group are in fact two kidney lobes coming 

from the same animal.
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Figure 94C. Parameter Ct o f the equivalent model circuit used for freshly excised kidney

tissue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



175

4 40E-011 - 

4 20E-011 - 

4.00E-011 - 

3 80E-011 

3.60E-011 - 

t  3 40E-011 - 

O  3.20E-011 - 

3 00E-011 - 

2 80E-011 - 

2 60E-011 - 

2.40E-011 

2 20E-011

5 - ^  I -

5— SHE

I - I

T
0 1000

“ I—
2000

■" 1 '
3000

Time (s)
4000 5000 6000

Figure 95C. Parameter Ci of the equivalent model circuit used for irradiated kidney 

tissue. Equal doses of 10.1 Gy were delivered before measurements no. 3 ,6  and 9
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