87 research outputs found

    Magnetic Domain Observation using Spin-Polarized Scanning Electron Microscopy

    Get PDF
    A new apparatus, spin-polarized scanning electron microscope (SEM), has been developed. This is a unique apparatus, which forms images by electron spin polarization. By using this device, magnetic domain images can be obtained because secondary electrons from ferromagnetic samples are polarized representing the magnetization of the sample originating point. This method provides new capabilities, such as magnetic contrast independent of surface morphology, detection of magnetization direction, and high spatial resolution

    Evola: Ortholog database of all human genes in H-InvDB with manual curation of phylogenetic trees

    Get PDF
    Orthologs are genes in different species that evolved from a common ancestral gene by speciation. Currently, with the rapid growth of transcriptome data of various species, more reliable orthology information is prerequisite for further studies. However, detection of orthologs could be erroneous if pairwise distance-based methods, such as reciprocal BLAST searches, are utilized. Thus, as a sub-database of H-InvDB, an integrated database of annotated human genes (http://h-invitational.jp/), we constructed a fully curated database of evolutionary features of human genes, called ‘Evola’. In the process of the ortholog detection, computational analysis based on conserved genome synteny and transcript sequence similarity was followed by manual curation by researchers examining phylogenetic trees. In total, 18 968 human genes have orthologs among 11 vertebrates (chimpanzee, mouse, cow, chicken, zebrafish, etc.), either computationally detected or manually curated orthologs. Evola provides amino acid sequence alignments and phylogenetic trees of orthologs and homologs. In ‘dN/dS view’, natural selection on genes can be analyzed between human and other species. In ‘Locus maps’, all transcript variants and their exon/intron structures can be compared among orthologous gene loci. We expect the Evola to serve as a comprehensive and reliable database to be utilized in comparative analyses for obtaining new knowledge about human genes. Evola is available at http://www.h-invitational.jp/evola/

    Small Changes in the Primary Structure of Transportan 10 Alter the Thermodynamics and Kinetics of its Interaction with Phospholipid Vesicles

    Get PDF
    ABSTRACT: The kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan. Carboxy-terminal amidation or substitution of tryptophan for tyrosine enhance binding and activity. The Gibbs energies of peptide binding to membranes determined experimentally and calculated from the interfacial hydrophobicity scale are in good agreement. The Gibbs energy for insertion into the bilayer core was calculated using hydrophobicity scales of residue transfer from water to octanol and to the membrane/ water interface. Peptide-induced efflux becomes faster as the Gibbs energies for binding and insertion of the tp10 variants decrease. If anionic lipids are included, binding and efflux rate increase, as expected because all tp10 variants are cationic and an electrostatic component is added. Whether the most important effect of peptide amidation is the change in charge or an enhancement of helical structure, however, still needs to be established. Nevertheless, it is clear that the changes in efflux rate reflect the differences in the thermodynamics of binding and insertion of the free and amidated peptide groups. We have recently reported a detailed investigation (1) o

    Population structure of the predatory mite Neoseiulus womersleyi in a tea field based on an analysis of microsatellite DNA markers

    Get PDF
    The predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae) is an important natural enemy of the Kanzawa spider mite, Tetranychus kanzawaki Kishida (Acari: Tetranychidae), in tea fields. Attraction and preservation of natural enemies by habitat management to reduce the need for acaricide sprays is thought to enhance the activity of N. womersleyi. To better conserve N. womersleyi in the field, however, it is essential to elucidate the population genetic structure of this species. To this end, we developed ten microsatellite DNA markers for N. womersleyi. We then evaluated population structure of N. womersleyi collected from a tea field, where Mexican sunflower, Tithonia rotundifolia (Mill.), was planted to preserve N. womersleyi. Seventy-seven adult females were collected from four sites within 200 m. The fixation indexes FST among subpopulations were not significantly different. The kinship coefficients between individuals did not differ significantly within a site as a function of the sampling dates, but the coefficients gradually decreased with increasing distance. Bayesian clustering analysis revealed that the population consisted of three genetic clusters, and that subpopulations within 100 m, including those collected on T. rotundifolia, were genetically similar to each other. Given the previously observed population dynamics of N. womersleyi, it appears that the area inhabited by a given cluster of the mite did not exceed 100 m. The estimation of population structure using microsatellite markers will provide valuable information in conservation biological control

    A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity

    Get PDF
    The c-myb promoter contains multiple GGA repeats beginning 17 bp downstream of the transcription initiation site. GGA repeats have been previously shown to form unusual DNA structures in solution. Results from chemical footprinting, circular dichroism and RNA and DNA polymerase arrest assays on oligonucleotides representing the GGA repeat region of the c-myb promoter demonstrate that the element is able to form tetrad:heptad:heptad:tetrad (T:H:H:T) G-quadruplex structures by stacking two tetrad:heptad G-quadruplexes formed by two of the three (GGA)4 repeats. Deletion of one or two (GGA)4 motifs destabilizes this secondary structure and increases c-myb promoter activity, indicating that the G-quadruplexes formed in the c-myb GGA repeat region may act as a negative regulator of the c-myb promoter. Complete deletion of the c-myb GGA repeat region abolishes c-myb promoter activity, indicating dual roles of the c-myb GGA repeat element as both a transcriptional repressor and an activator. Furthermore, we demonstrated that Myc-associated zinc finger protein (MAZ) represses c-myb promoter activity and binds to the c-myb T:H:H:T G-quadruplexes. Our findings show that the T:H:H:T G-quadruplex-forming region in the c-myb promoter is a critical cis-acting element and may repress c-myb promoter activity through MAZ interaction with G-quadruplexes in the c-myb promoter

    Submicron Feature Patterning Using Spin‐On‐Glass Image Reversal (SOGIR)

    No full text

    Specific binding of erythropoietin to its receptor on responsive mouse erythroleukemia cells.

    No full text

    Proplatelet formation of megakaryocytes is triggered by autocrine-synthesized estradiol

    No full text
    A matured megakaryocyte releases thousands of platelets through a drastic morphological change, proplatelet formation (PPF). The megakaryocyte/erythrocyte-specific transcription factor, p45 NF-E2, is essential for initiating PPF, but the factor regulating PPF has not been identified. Here we report that estradiol synthesized in megakaryocytes triggers PPF. We demonstrate that a key enzyme for steroid hormone biosynthesis, 3β-hydroxysteroid dehydrogenase (3β-HSD), is a target of p45 NF-E2, and rescues PPF of p45 NF-E2-deficient megakaryocytes. We also show that estradiol is synthesized within megakaryocytes, and that extracellular estradiol stimulates PPF, inhibition of 3β-HSD activity blocks PPF, and estrogen receptor antagonists inhibit platelet production in vivo. We conclude that autocrine estradiol action regulates platelet production by triggering PPF
    corecore