292 research outputs found
Primordial Perturbations from Multifield Inflation with Nonminimal Couplings
Realistic models of particle physics include many scalar fields. These fields
generically have nonminimal couplings to the Ricci curvature scalar, either as
part of a generalized Einstein theory or as necessary counterterms for
renormalization in curved background spacetimes. We develop a gauge-invariant
formalism for calculating primordial perturbations in models with multiple
nonminimally coupled fields. We work in the Jordan frame (in which the
nonminimal couplings remain explicit) and identify two distinct sources of
entropy perturbations for such models. One set of entropy perturbations arises
from interactions among the multiple fields. The second set arises from the
presence of nonminimal couplings. Neither of these varieties of entropy
perturbations will necessarily be suppressed in the long-wavelength limit, and
hence they can amplify the curvature perturbation, , even for modes that
have crossed outside the Hubble radius. Models that overproduce long-wavelength
entropy perturbations endanger the close fit between predicted inflationary
spectra and empirical observations.Comment: 16 pages, no figures. References added to match published versio
Grover's search with faults on some marked elements
Grover's algorithm is a quantum query algorithm solving the unstructured
search problem of size using queries. It provides a
significant speed-up over any classical algorithm \cite{Gro96}.
The running time of the algorithm, however, is very sensitive to errors in
queries. It is known that if query may fail (report all marked elements as
unmarked) the algorithm needs queries to find a marked element
\cite{RS08}. \cite{AB+13} have proved the same result for the model where each
marked element has its own probability to be reported as unmarked.
We study the behavior of Grover's algorithm in the model where the search
space contains both faulty and non-faulty marked elements. We show that in this
setting it is indeed possible to find one of non-faulty marked items in
queries.
We also analyze the limiting behavior of the algorithm for a large number of
steps and show the existence and the structure of limiting state .Comment: 17 pages, 6 figure
Volumes of polytopes in spaces of constant curvature
We overview the volume calculations for polyhedra in Euclidean, spherical and
hyperbolic spaces. We prove the Sforza formula for the volume of an arbitrary
tetrahedron in and . We also present some results, which provide a
solution for Seidel problem on the volume of non-Euclidean tetrahedron.
Finally, we consider a convex hyperbolic quadrilateral inscribed in a circle,
horocycle or one branch of equidistant curve. This is a natural hyperbolic
analog of the cyclic quadrilateral in the Euclidean plane. We find a few
versions of the Brahmagupta formula for the area of such quadrilateral. We also
present a formula for the area of a hyperbolic trapezoid.Comment: 22 pages, 9 figures, 58 reference
Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry
A new method to obtain trigonometry for the real spaces of constant curvature
and metric of any (even degenerate) signature is presented. The method
encapsulates trigonometry for all these spaces into a single basic
trigonometric group equation. This brings to its logical end the idea of an
absolute trigonometry, and provides equations which hold true for the nine
two-dimensional spaces of constant curvature and any signature. This family of
spaces includes both relativistic and non-relativistic homogeneous spacetimes;
therefore a complete discussion of trigonometry in the six de Sitter,
minkowskian, Newton--Hooke and galilean spacetimes follow as particular
instances of the general approach. Any equation previously known for the three
classical riemannian spaces also has a version for the remaining six
spacetimes; in most cases these equations are new. Distinctive traits of the
method are universality and self-duality: every equation is meaningful for the
nine spaces at once, and displays explicitly invariance under a duality
transformation relating the nine spaces. The derivation of the single basic
trigonometric equation at group level, its translation to a set of equations
(cosine, sine and dual cosine laws) and the natural apparition of angular and
lateral excesses, area and coarea are explicitly discussed in detail. The
exposition also aims to introduce the main ideas of this direct group
theoretical way to trigonometry, and may well provide a path to systematically
study trigonometry for any homogeneous symmetric space.Comment: 51 pages, LaTe
Algorithms and software for areal surface texture function parameters
Software for the evaluation of areal surface texture function parameters is described. Definitions of the parameters, expressed in terms of the inverse areal material ratio function, are provided along with details of the numerical algorithms employed in the software to implement calculations to evaluate approximations to the parameters according to those definitions. Results obtained using the software to process a number of data sets representing different surfaces are compared with those returned by proprietary software for surface texture measurement. Differences in the results, arising from different choices being made when implementing the steps in the parameter evaluation process, are discussed
Textbook accounts of the rules of indices with rational exponents
The rules of indices, e.g. anbn = (ab)n, are a particularly important part of elementary algebra. This paper reports results from a textbook analysis which examined how the shift from integer to rational exponents in the rules of indices is discussed in school textbooks. The analysis also considered related issues, such as notation and the introduction of complex numbers. A selection of popular textbooks from the period 1800–2000 was examined and the nature of the justification given for the extension of meaning to rational indices considered. In both the definition and computational rules, when extending the domain of n in an to rational numbers the (potential) contraction of the domain of a to positive numbers was often quietly ignored. A wide variety of approaches are used in choosing what is to be a definition, what is to follow, and how this is justified. The difference between computational rules for practical algebraic manipulation and a formal definition was often blurred.<br/
Osteoarthritis in horses - Part 2: a review of the intra-articular use of corticosteroids as a method of treatment
Computer-Aided Lead Optimization: Improved Small-Molecule Inhibitor of the Zinc Endopeptidase of Botulinum Neurotoxin Serotype A
Optimization of a serotype-selective, small-molecule inhibitor of botulinum neurotoxin serotype A (BoNTA) endopeptidase is a formidable challenge because the enzyme-substrate interface is unusually large and the endopeptidase itself is a large, zinc-binding protein with a complex fold that is difficult to simulate computationally. We conducted multiple molecular dynamics simulations of the endopeptidase in complex with a previously described inhibitor (Kiapp of 7±2.4 µM) using the cationic dummy atom approach. Based on our computational results, we hypothesized that introducing a hydroxyl group to the inhibitor could improve its potency. Synthesis and testing of the hydroxyl-containing analog as a BoNTA endopeptidase inhibitor showed a twofold improvement in inhibitory potency (Kiapp of 3.8±0.8 µM) with a relatively small increase in molecular weight (16 Da). The results offer an improved template for further optimization of BoNTA endopeptidase inhibitors and demonstrate the effectiveness of the cationic dummy atom approach in the design and optimization of zinc protease inhibitors
A deletion in GDF7 is associated with a heritable forebrain commissural malformation concurrent with ventriculomegaly and interhemispheric cysts in cats
Publisher Copyright: © 2020 by the authors.An inherited neurologic syndrome in a family of mixed-breed Oriental cats has been characterized as forebrain commissural malformation, concurrent with ventriculomegaly and interhemispheric cysts. However, the genetic basis for this autosomal recessive syndrome in cats is unknown. Forty-three cats were genotyped on the Illumina Infinium Feline 63K iSelect DNA Array and used for analyses. Genome-wide association studies, including a sib-transmission disequilibrium test and a case-control association analysis, and homozygosity mapping, identified a critical region on cat chromosome A3. Short-read whole genome sequencing was completed for a cat trio segregating with the syndrome. A homozygous 7 bp deletion in growth differentiation factor 7 (GDF7) (c.221_227delGCCGCGC [p.Arg74Profs]) was identified in affected cats, by comparison to the 99 Lives Cat variant dataset, validated using Sanger sequencing and genotyped by fragment analyses. This variant was not identified in 192 unaffected cats in the 99 Lives dataset. The variant segregated concordantly in an extended pedigree. In mice, GDF7 mRNA is expressed within the roof plate when commissural axons initiate ventrally-directed growth. This finding emphasized the importance of GDF7 in the neurodevelopmental process in the mammalian brain. A genetic test can be developed for use by cat breeders to eradicate this variant.Peer reviewe
Werewolf, there wolf : Variants in hairless associated with hypotrichia and roaning in the lykoi cat breed
Publisher Copyright: © 2020 by the authors. Licensee MDPI, Basel, Switzerland.A variety of cat breeds have been developed via novelty selection on aesthetic, dermatological traits, such as coat colors and fur types. A recently developed breed, the lykoi (a.k.a. werewolf cat), was bred from cats with a sparse hair coat with roaning, implying full color and all white hairs. The lykoi phenotype is a form of hypotrichia, presenting as a significant reduction in the average numbers of follicles per hair follicle group as compared to domestic shorthair cats, a mild to severe perifollicular to mural lymphocytic infiltration in 77% of observed hair follicle groups, and the follicles are often miniaturized, dilated, and dysplastic. Whole genome sequencing was conducted on a single lykoi cat that was a cross between two independently ascertained lineages. Comparison to the 99 Lives dataset of 194 non‐lykoi cats suggested two variants in the cat homolog for Hairless (HR) (HR lysine demethylase and nuclear receptor corepressor) as candidate causal gene variants. The lykoi cat was a compound heterozygote for two loss of function variants in HR, an exon 3 c.1255_1256dupGT (chrB1:36040783), which should produce a stop codon at amino acid 420 (p.Gln420Serfs*100) and, an exon 18 c.3389insGACA (chrB1:36051555), which should produce a stop codon at amino acid position 1130 (p.Ser1130Argfs*29). Ascertainment of 14 additional cats from founder lineages from Canada, France and different areas of the USA identified four additional loss of function HR variants likely causing the highly similar phenotypic hair coat across the diverse cats. The novel variants in HR for cat hypotrichia can now be established between minor differences in the phenotypic presentations.Peer reviewe
- …
