55 research outputs found

    Mitochondria in epithelial ovarian carcinoma exhibit abnormal phenotypes and blunted associations with biobehavioral factors

    Get PDF
    Malignant tumor cells exhibit mitochondrial alterations and are also influenced by biobehavioral processes, but the intersection of biobehavioral factors and mitochondria in malignant tumors remains unexplored. Here we examined multiple biochemical and molecular markers of mitochondrial content and function in benign tissue and in high-grade epithelial ovarian carcinoma (EOC) in parallel with exploratory analyses of biobehavioral factors. First, analysis of a publicly-available database (n = 1435) showed that gene expression of specific mitochondrial proteins in EOC is associated with survival. Quantifying multiple biochemical and molecular markers of mitochondrial content and function in tissue from 51 patients with benign ovarian masses and 128 patients with high-grade EOC revealed that compared to benign tissue, EOCs exhibit 3.3–8.4-fold higher mitochondrial content and respiratory chain enzymatic activities (P < 0.001) but similar mitochondrial DNA (mtDNA) levels (− 3.1%), documenting abnormal mitochondrial phenotypes in EOC. Mitochondrial respiratory chain activity was also associated with interleukin-6 (IL-6) levels in ascites. In benign tissue, negative biobehavioral factors were inversely correlated with mitochondrial content and respiratory chain activities, whereas positive biobehavioral factors tended to be positively correlated with mitochondrial measures, although effect sizes were small to medium (r = − 0.43 to 0.47). In contrast, serous EOCs showed less pronounced biobehavioral-mitochondrial correlations. These results document abnormal mitochondrial functional phenotypes in EOC and warrant further research on the link between biobehavioral factors and mitochondria in cancer

    Elucidating the direct effects of the novel HDAC inhibitor bocodepsin (OKI-179) on T cells to rationally design regimens for combining with immunotherapy

    Get PDF
    Histone deacetylase inhibitors (HDACi) are currently being explored for the treatment of both solid and hematological malignancies. Although originally thought to exert cytotoxic responses through tumor-intrinsic mechanisms by increasing expression of tumor suppressor genes, several studies have demonstrated that therapeutic responses depend on an intact adaptive immune system: particularly CD8 T cells. It is therefore critical to understand how HDACi directly affects T cells in order to rationally design regimens for combining with immunotherapy. In this study, we evaluated T cell responses to a novel class-selective HDACi (OKI-179, bocodepsin) by assessing histone acetylation levels, which revealed rapid responsiveness accompanied by an increase in CD4 and CD8 T cell frequencies in the blood. However, these rapid responses were transient, as histone acetylation and frequencies waned within 24 hours. This contrasts with in vitro models where high acetylation was sustained and continuous exposure to HDACi suppressed cytokine production. In vivo comparisons demonstrated that stopping OKI-179 treatment during PD-1 blockade was superior to continuous treatment. These findings provide novel insight into the direct effects of HDAC inhibitors on T cells and that treatment schedules that take into account acute T cell effects should be considered when combined with immunotherapies in order to fully harness the tumor-specific T cell responses in patients

    Dual Anti-OX40/IL-2 Therapy Augments Tumor Immunotherapy via IL-2R-Mediated Regulation of OX40 Expression

    Get PDF
    The provision of T cell co-stimulation via members of the TNFR super-family, including OX40 (CD134) and 4-1BB (CD137), provides critical signals that promote T cell survival and differentiation. Recent studies have demonstrated that ligation of OX40 can augment T cell-mediated anti-tumor immunity in pre-clinical models and more importantly, OX40 agonists are under clinical development for cancer immunotherapy. OX40 is of particular interest as a therapeutic target as it is not expressed on naïve T cells but rather, is transiently up-regulated following TCR stimulation. Although TCR engagement is necessary for inducing OX40 expression, the downstream signals that regulate OX40 itself remain unclear. In this study, we demonstrate that OX40 expression is regulated through a TCR and common gamma chain cytokine-dependent signaling cascade that requires JAK3-mediated activation of the downstream transcription factors STAT3 and STAT5. Furthermore, combined treatment with an agonist anti-OX40 mAb and IL-2 augmented tumor immunotherapy against multiple tumor types. Dual therapy was also able to restore the function of anergic tumor-reactive CD8 T cells in mice with long-term well-established (>5 wks) tumors, leading to increased survival of the tumor-bearing hosts. Together, these data reveal the ability of TCR/common gamma chain cytokine signaling to regulate OX40 expression and demonstrate a novel means of augmenting cancer immunotherapy by providing dual anti-OX40/common gamma chain cytokine-directed therapy

    Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes

    Get PDF
    The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described

    583 Exploring the potential of T cell acute lymphoblastic leukemia (T-ALL) for generating leukemia-specific T cell responses that can be therapeutically harnessed with immunotherapy

    No full text
    Background T cell Acute Lymphoblastic Leukemia (T-ALL) is a devastating malignancy found primarily in pediatric populations. Unfortunately, standard of care for T-ALL has not progressed from highly toxic, intensive regimens of chemotherapy, which fails to cure all patients. Immunotherapies designed to activate patients‘ leukemia-specific T cells may provide a new therapeutic avenue to increase complete response rates, reduce toxicity without the need to engineer (e.g. CAR) cells. However, it is unknown whether T-ALL is capable of being recognized by T cells due given its relatively low mutation-rate. These studies therefore sought to investigate whether signs of leukemia-specific T cell responses are generated by T-ALL. Because T-ALL results in systemic disease and infiltrates multiple lymphoid and non-lymphoid tissues, these studies also determined how the divergent immune contextures of these TMEs impacts T cell responses to T-ALL. From this, we aim to identify immunotherapeutic targets capable of activating T cells across tissues to eradicate leukemia systemically. Methods Primary leukemia cells isolated from a spontaneous murine model (LN3 mice) into immune-competent, congenic (CD45.1) recipient mice. Tissues were harvested at distinct stages of disease for analysis by flow cytometry or utilizing NanoString Technologies’ GeoMX Digital Spatial Profiling (DSP) platform. Results Flow cytometric analysis of T cells revealed extensive changes in response to T-ALL that included multiple features of exhaustion typically associated with anti-tumor responses as determined by upregulation of co-inhibitory receptors and TOX. This included a surprisingly high-frequency of PD1+ T cells, which was accompanied by PDL1- and PDL2-expressing myeloid cells that likely are restraining these subsets. Importantly, combination immunotherapy with OX40 agonists while inhibiting PD1 resulted in drastically reduced tumor burden and concomitant expansion of proliferating granzyme-expressing CD8 T cells. To gain better insight into T cell responses within distinct organs, we analyzed tissue sections using DSP. This technique enabled us to evaluate T cells in direct contact with leukemia infiltrates compared to T cells in regions without T-ALL, which further revealed an enrichment of activated subsets. Importantly, these studies have provided critical insight needed to better understand how T cells responding to T-ALL diverge between distinct types of tissues. Conclusions The results from these studies collectively suggest that T cells are activated by T-ALL and that they can be therapeutically harnessed despite relatively low mutation-rates. Future studies will continue analysis of individual organs and use these results to rationally design combinations of immunotherapies by tailoring to activate T cells in all tissue types. Acknowledgements Special thanks to all the support and analysis from everyone at NanoString, along with financial support provided by a SITC-NanoString DSP Fellowship awarded to Dr. Todd Triplett used for DSP analysis of all frozen tissues in these studies. Salary support for Dr. Triplett and pilot funding was provided by departmental funds via a Cancer Prevention and Research Institute of Texas (CPRIT) Scholar Award (Grant #RR160093; awarded to Dr. Gail Eckhardt). http://dx.doi.org/10.1136/jitc-2021-SITC2021.58

    Immune Checkpoint Blockade in Gastrointestinal Cancers: The Current Status and Emerging Paradigms

    No full text
    Immunotherapy is a rapidly evolving treatment paradigm that holds promise to provide long-lasting survival benefits for patients with cancer. This promise, however, remains unfulfilled for the majority of patients with gastrointestinal (GI) cancers, as significant limitations in efficacy exist with immune checkpoint inhibitors (ICIs) in this disease group. A plethora of novel combination treatment strategies are currently being investigated in various clinical trials to make them more efficacious as our understanding of molecular mechanisms mediating resistance to immunotherapy advances. In this article, we summarize the current status of immune checkpoint blockade in GI cancers and discuss the biological rationales that underlie the emerging treatment strategies being tested in ongoing clinical trials in combination with ICIs. We also highlight the promising early results from these strategies and provide future perspectives on enhancing response to immunotherapy for patients with GI cancers

    STAT3 and STAT5 are required for optimal up-regulation of OX40 following stimulation with common gc cytokines.

    No full text
    <p><b>A</b>) WT or STAT3<sup>−/−</sup> OT-I T cells were stimulated for 2 days, harvested, and then re-cultured with media alone, rmIL-2, rmIL-4, or rmIL-21 (100 ng/ml); 24 hours later cells were harvested and the extent of CD25 and OX40 expression (% positive and MFI) were measured. <b>B</b>) Polyclonal endogenous WT or STAT5<sup>−/−</sup> CD8 T cells were stimulated for 2 days with 2 mcg/ml anti-CD3 mAb, harvested, and then re-cultured with media alone, rmIL-2, rmIL-4, or rmIL-21 (100 ng/ml) and then 24 hours later, cells were harvested and the extent of CD25 and OX40 expression (% positive and MFI) were determined. <b>A, B</b>) Bar graphs depict the mean+/−SD (n = 2–3/group). Data are representative of one out of two independent experiments. *P<0.05; ** P<0.01; *** P<0.001; NS = no statistically significant difference.</p
    • …
    corecore