47 research outputs found

    Basolateral Junction Proteins Regulate Competition for the Follicle Stem Cell Niche in the Drosophila Ovary

    Get PDF
    Epithelial stem cells are routinely lost or damaged during adult life and must therefore be replaced to maintain homeostasis. Recent studies indicate that stem cell replacement occurs through neutral competition in many types of epithelial tissues, but little is known about the factors that determine competitive outcome. The epithelial follicle stem cells (FSCs) in the Drosophila ovary are regularly lost and replaced during normal homeostasis, and we show that FSC replacement conforms to a model of neutral competition. In addition, we found that FSCs mutant for the basolateral junction genes, lethal giant larvae (lgl) or discs large (dlg), undergo a biased competition for niche occupancy characterized by increased invasion of neighboring FSCs and reduced loss. Interestingly, FSCs mutant for a third basolateral junction gene, scribble (scrib), do not exhibit biased competition, suggesting that Lgl and Dlg regulate niche competition through a Scrib-independent process. Lastly, we found that FSCs have a unique cell polarity characterized by broadly distributed adherens junctions and the lack of a mature apical domain. Collectively, these observations indicate that Lgl and Dlg promote the differentiation of FSC progeny to a state in which they are less prone to invade the neighboring niche. In addition, we demonstrate that the neutral drift model can be adapted to quantify non-neutral behavior of mutant clones

    Neutral competition for drosophila follicle and cyst stem cell niches requires vesicle trafficking genes

    Get PDF
    The process of selecting for cellular fitness through competition plays a critical role in both development and disease. The germarium, a structure at the tip of the ovariole of a Drosophila ovary, contains two follicle stem cells (FSCs) that undergo neutral competition for the stem cell niche. Using the FSCs as a model, we performed a genetic screen through a collection of 126 mutants in essential genes on the X chromosome to identify candidates that increase or decrease competition for the FSC niche. We identified ∼55 and 6% of the mutations screened as putative FSC hypo- or hyper-competitors, respectively. We found that a large majority of mutations in vesicle trafficking genes (11 out of the 13 in the collection of mutants) are candidate hypo-competition alleles, and we confirmed the hypo-competition phenotype for four of these alleles. We also show that Sec16 and another COPII vesicle trafficking component, Sar1, are required for follicle cell differentiation. Lastly, we demonstrate that, although some components of vesicle trafficking are also required for neutral competition in the cyst stem cells of the testis, there are important tissue-specific differences. Our results demonstrate a critical role for vesicle trafficking in stem cell niche competition and differentiation, and we identify a number of putative candidates for further exploration

    Regulation of Epithelial Stem Cell Replacement and Follicle Formation in the Drosophila Ovary

    No full text
    Though much has been learned about the process of ovarian follicle maturation through studies of oogenesis in both vertebrate and invertebrate systems, less is known about how follicles form initially. In Drosophila, two somatic follicle stem cells (FSCs) in each ovariole give rise to all polar cells, stalk cells, and main body cells needed to form each follicle. We show that one daughter from each FSC founds most follicles but that cell type specification is independent of cell lineage, in contrast to previous claims of an early polar/stalk lineage restriction. Instead, key intercellular signals begin early and guide cell behavior. An initial Notch signal from germ cells is required for FSC daughters to migrate across the ovariole and on occasion to replace the opposite stem cell. Both anterior and posterior polar cells arise in region 2b at a time when ∼16 cells surround the cyst. Later, during budding, stalk cells and additional polar cells are specified in a process that frequently transfers posterior follicle cells onto the anterior surface of the next older follicle. These studies provide new insight into the mechanisms that underlie stem cell replacement and follicle formation during Drosophila oogenesis

    Carbon monoxide-induced suspended animation protects against hypoxic damage in Caenorhabditis elegans

    No full text
    Oxygen deprivation is a major cause of cellular damage and death. Here we demonstrate that Caenorhabditis elegans embryos, which can survive both in anoxia (<0.001 kPa O(2)) by entering into suspended animation and in mild hypoxia (0.25-1 kPa O(2)) through a hypoxia-inducible factor 1-mediated response, cannot survive in intermediate concentrations of oxygen, between 0.01 and 0.1 kPa O(2). Moreover, we show that carbon monoxide can protect C. elegans embryos against hypoxic damage in this sensitive range. Carbon monoxide can also rescue the hypoxia-sensitive mutant hif-1(ia04) from lethality in hypoxia. This work defines the oxygen tensions over which hypoxic damage occurs in C. elegans embryos and demonstrates that carbon monoxide can prevent this damage by inducing suspended animation
    corecore