34 research outputs found

    The Krein Matrix: General Theory and Concrete Applications in Atomic Bose-Einstein Condensates

    Full text link
    When finding the nonzero eigenvalues for Hamiltonian eigenvalue problems it is especially important to locate not only the unstable eigenvalues (i.e., those with positive real part), but also those which are purely imaginary but have negative Krein signature. These latter eigenvalues have the property that they can become unstable upon collision with other purely imaginary eigenvalues, i.e., they are a necessary building block in the mechanism leading to the so-called Hamiltonian-Hopf bifurcation. In this paper we review a general theory for constructing a meromorphic matrix-valued function, the so-called Krein matrix, which has the property of not only locating the unstable eigenvalues, but also those with negative Krein signature. These eigenvalues are realized as zeros of the determinant. The resulting finite dimensional problem obtained by setting the determinant of the Krein matrix to zero presents a valuable simplification. In this paper the usefulness of the technique is illustrated through prototypical examples of spectral analysis of states that have arisen in recent experimental and theoretical studies of atomic Bose-Einstein condensates. In particular, we consider one-dimensional settings (the cigar trap) possessing real-valued multi-dark-soliton solutions, and two-dimensional settings (the pancake trap) admitting complex multi-vortex stationary waveforms.Comment: 26 pages, 16 figures (revised version on April 18 2013

    Stability criterion for bright solitary waves of the perturbed cubic-quintic Schroedinger equation

    Full text link
    The stability of the bright solitary wave solution to the perturbed cubic-quintic Schroedinger equation is considered. It is shown that in a certain region of parameter space these solutions are unstable, with the instability being manifested as a small positive eigenvalue. Furthermore, it is shown that in the complimentary region of parameter space there are no small unstable eigenvalues. The proof involves a novel calculation of the Evans function, which is of interest in its own right. As a consequence of the eigenvalue calculation, it is additionally shown that N-bump bright solitary waves bifurcate from the primary wave.Comment: 28 pages, LaTeX, submitted; author info at http://www.math.unm.edu/~kapitul

    Existence and stability of hole solutions to complex Ginzburg-Landau equations

    Full text link
    We consider the existence and stability of the hole, or dark soliton, solution to a Ginzburg-Landau perturbation of the defocusing nonlinear Schroedinger equation (NLS), and to the nearly real complex Ginzburg-Landau equation (CGL). By using dynamical systems techniques, it is shown that the dark soliton can persist as either a regular perturbation or a singular perturbation of that which exists for the NLS. When considering the stability of the soliton, a major difficulty which must be overcome is that eigenvalues may bifurcate out of the continuous spectrum, i.e., an edge bifurcation may occur. Since the continuous spectrum for the NLS covers the imaginary axis, and since for the CGL it touches the origin, such a bifurcation may lead to an unstable wave. An additional important consideration is that an edge bifurcation can happen even if there are no eigenvalues embedded in the continuous spectrum. Building on and refining ideas first presented in Kapitula and Sandstede (Physica D, 1998) and Kapitula (SIAM J. Math. Anal., 1999), we show that when the wave persists as a regular perturbation, at most three eigenvalues will bifurcate out of the continuous spectrum. Furthermore, we precisely track these bifurcating eigenvalues, and thus are able to give conditions for which the perturbed wave will be stable. For the NLS the results are an improvement and refinement of previous work, while the results for the CGL are new. The techniques presented are very general and are therefore applicable to a much larger class of problems than those considered here.Comment: 41 pages, 4 figures, submitte

    An instability index theory for quadratic pencils and applications

    Get PDF
    Abstract. Primarily motivated by the stability analysis of nonlinear waves in second-order in time Hamiltonian systems, in this paper we develop an instability index theory for quadratic operator pencils acting on a Hilbert space. In an extension of the known theory for linear pencils, explicit connections are made between the number of eigenvalues of a given quadratic operator pencil with positive real parts to spectral information about the individual operators comprising the coefficients of the spectral parameter in the pencil. As an application, we apply the general theory developed here to yield spectral and nonlinear stability/instability results for abstract second-order in time wave equations. More specifically, we consider the problem of the existence and stability of spatially periodic waves for the "good" Boussinesq equation. In the analysis our instability index theory provides an explicit, and somewhat surprising, connection between the stability of a given periodic traveling wave solution of the "good" Boussinesq equation and the stability of the same periodic profile, but with different wavespeed, in the nonlinear dynamics of a related generalized Korteweg-de Vries equation

    Multidimensional stability of planar travelling waves

    No full text

    Analyzing Hamiltonian spectral problems via the Krein matrix

    No full text
    The Krein matrix is a matrix-valued function which can be used to study Hamiltonian spectral problems. Akin to the Evans matrix, it has the property that it is singular when evaluated at an eigenvalue. Unlike the Evans matrix, it is not analytic, but is instead meromorphic. I will briefly go over its construction, and then apply it to the study of spectral stability of small periodic waves for a couple of equations.Non UBCUnreviewedAuthor affiliation: Calvin CollegeFacult
    corecore