494 research outputs found

    Proposing New Barrens National Natural Landmarks

    Get PDF
    The National Natural Landmarks (NNL) Program, administered and maintained through the National Park Service, was established in 1962 with the goal of highlighting sites that best demonstrate the outstanding geologic and biologic features of the United States. In a unique partnership between public and private landowners, the National Park Service accepts sites into the program that best illustrate the diversity of our country’s natural heritage regardless of ownership. The NNL program seeks solely to recognize these sites for their geologic and biologic significance and to strengthen the public’s appreciation for and conservation of America’s natural heritage. Potential NNLs are evaluated based on the following criteria: (1) outstanding condition, (2) illustrative value, (3) rarity, (4) diversity, and (5) value to science and education. Sites are designated by the secretary of the interior and, as of today, 586 landmarks have received the NNL designation

    Quantum random walks with decoherent coins

    Get PDF
    The quantum random walk has been much studied recently, largely due to its highly nonclassical behavior. In this paper, we study one possible route to classical behavior for the discrete quantum walk on the line: the presence of decoherence in the quantum ``coin'' which drives the walk. We find exact analytical expressions for the time dependence of the first two moments of position, and show that in the long-time limit the variance grows linearly with time, unlike the unitary walk. We compare this to the results of direct numerical simulation, and see how the form of the position distribution changes from the unitary to the usual classical result as we increase the strength of the decoherence.Comment: Minor revisions, especially in introduction. Published versio

    The Role of Landscape Connectivity in Assembling Exotic Plant Communities: A Network Analysis

    Get PDF
    Landscape fragmentation and exotic species invasions are two modern-day forces that have strong and largely irreversible effects on native diversity worldwide. The spatial arrangement of habitat fragments is critical in affecting movement of individuals through a landscape, but little is known about how invasive species respond to landscape configuration relative to native species. This information is crucial for managing the global threat of invasive species spread. Using network analysis and partial Mantel tests to control for covarying environmental conditions, we show that forest plant communities in a fragmented landscape have spatial structure that is best captured by a network representation of landscape connectivity. This spatial structure is less pronounced in invasive species and exotic species dispersed by animals. Our research suggests that invasive species can spread more easily in fragmented landscapes than native species, which may. make communities more homogeneous over time

    Quantum Walks driven by many coins

    Full text link
    Quantum random walks have been much studied recently, largely due to their highly nonclassical behavior. In this paper, we study one possible route to classical behavior for the discrete quantum random walk on the line: the use of multiple quantum ``coins'' in order to diminish the effects of interference between paths. We find solutions to this system in terms of the single coin random walk, and compare the asymptotic limit of these solutions to numerical simulations. We find exact analytical expressions for the time-dependence of the first two moments, and show that in the long time limit the ``quantum mechanical'' behavior of the one-coin walk persists. We further show that this is generic for a very broad class of possible walks, and that this behavior disappears only in the limit of a new coin for every step of the walk.Comment: 36 pages RevTeX 4.0 + 5 figures (encapsulated Postscript). Submitted to Physical Review

    Bioresponsive hydrogels

    Get PDF
    We highlight recent developments in hydrogel materials with biological responsiveness built in. These ‘smart’ biomaterials change properties in response to selective biological recognition events. When exposed to a biological target (nutrient, growth factor, receptor, antibody, enzyme, or whole cell), molecular recognition events trigger changes in molecular interactions that translate into macroscopic responses, such as swelling/collapse or solution-to-gel transitions. The hydrogel transitions may be used directly as optical readouts for biosensing, linked to the release of actives for drug delivery, or instigate biochemical signaling events that control or direct cellular behavior. Accordingly, bioresponsive hydrogels have gained significant interest for application in diagnostics, drug delivery, and tissue regeneration/wound healing

    Universal light quark mass dependence and heavy-light meson spectroscopy

    Full text link
    Clean predictions are presented for all the spin-averaged heavy-light meson spectroscopies. A new symmetry is identified wherein the energy eigenstates have a universal dependence on both the light and heavy quark masses. This universality is used in an efficient analysis of these mesons within the QCD string/flux tube picture. Unique predictions for all the D, D_s, B, and B_s type mesons in terms of just four measured quantities.Comment: REVTeX4, 6 pages, 9 eps figure

    There are no magnetically charged particle-like solutions of the Einstein Yang-Mills equations for Abelian models

    Full text link
    We prove that there are no magnetically charged particle-like solutions for Abelian models in Einstein Yang-Mills, but for non-Abelian models the possibility remains open. An analysis of the Lie algebraic structure of the Yang-Mills fields is essential to our results. In one key step of our analysis we use invariant polynomials to determine which orbits of the gauge group contain the possible asymptotic Yang-Mills field configurations. Together with a new horizontal/vertical space decomposition of the Yang-Mills fields this enables us to overcome some obstacles and complete a dynamical system existence theorem for asymptotic solutions with nonzero total magnetic charge. We then prove that these solutions cannot be extended globally for Abelian models and begin an investigation of the details for non-Abelian models.Comment: 48 pages, 1 figur
    corecore