28 research outputs found
Al-B-C ternary compounds : synthesis, structure, composition and thermal stability
International audienc
Al-B-C ternary compounds : synthesis, structure, composition and thermal stability
International audienc
The abundance and stability of âwaterâ in type 1 and 2 carbonaceous chondrites (CI, CM and CR)
International audienceCarbonaceous chondrites record processes of aqueous alteration in the presence of hydrated and hydroxylated minerals, which could have provided a source of water in the inner solar system (Alexander et al., 2012, 2013). In this study, thermogravimetric analysis (TGA) was performed on 26 CM chondrites, which cover a range of degree of aqueous alteration from 2.0, such as Meteorite Hills (MET) 01070, to 2.6, such as Queen Alexandra Range (QUE) 97990, in order to quantify their water content. In addition, by measuring the release of volatile elements as a function of temperature, we obtained information on the mineralogy of water-bearing phases and provide indicators of aqueous alteration based on water released by phyllosilicates. These analyses are combined with infrared spectroscopy (IR) made on meteorite pellets heated up to 300 °C. The infrared features (-OH band at 3-ÎŒm and SiO4 around 10-ÎŒm) revealed a correlation with TGA. The two techniques are in agreement with the scheme of aqueous alteration proposed by Rubin et al. (2007) and Alexander et al. (2013) based on phyllosilicate abundance. The low temperature (200-400 °C) mass loss observed in TGA is attributed to Fe-oxy-hydroxydes (ferrihydrite, goethite). However, the proportion of these minerals formed by terrestrial alteration remains unknown. TGA also revealed two anomalous CM chondrites, Pecora Escarpment (PCA) 02012 and PCA 02010. Their TGA curves are significantly different from those of âregularâ CMs with little mass loss, which can be related to the dehydration history of these meteorites in response to a heating event (Raman measurements also point toward a thermal event, Quirico et al., 2013). In the case of more mildly heated chondrites, such as with Wisconsin Range (WIS) 91600, the TGA curve presents similar mass loss to the other CMs. Seven bulk measurements of CR chondrites and 3 measurements of matrix-enriched parts of CR meteorites were also studied by TGA, and confirm the low hydration level of chondrules and a significant alteration of the matrix. The water content of the matrix of the CM 2.6 QUE 97990 was estimated and compared to TGA of the matrix enriched portion of the CR2 EET 92159 and that of Orgueil. Results suggest a similar aqueous alteration degree between Orgueil and the matrix of CMs (around 25 wt.%) and a lower alteration of the CR2 matrix (11 wt.% of H2O)
Insertion of triethyleneglycol dimethacrylate inside mesoporous silica for composites elaboration
International audienceThe capacity of mesoporous silica to be used as filler in nanocomposite polymerâsilica has been studied. One constituent of dental resin, triethyleneglycol dimethacrylate (TEGDMA), has been considered and its polymerization has been performed using a light curing process and camphorquinone as initiator. The filling of the silica mesoporosity has been followed using X-ray diffraction, nitrogen adsorption/desorption isotherms, differential scanning and thermo-mechanical analyses, helium density measurements and SEM analysis. These characterizations show that more than 90% of the porous volume is filled with the polymer, when the silica weight% stays below 50%
The secondary history of Sutter's Mill CM carbonaceous chondrite based on water abundance and the structure of its organic matter from two clasts
International audienceSutter's Mill is a regolith breccia composed of both heavily altered clasts and more reduced xenoliths. Here, we present a detailed investigation of fragments of SM18 and SM51. We have characterized the water content and the mineralogy by infrared (IR) and thermogravimetric analysis (TGA) and the structure of the organic compounds by Raman spectroscopy, to characterize the secondary history of the clasts, including aqueous alteration and thermal metamorphism. The three methods used in this study suggest that SM18 was significantly heated. The amount of water contained in phyllosilicates derived by TGA is estimated to be approximately 3.2 wt%. This value is quite low compared with other CM chondrites that typically range from 6 to 12 wt%. The infrared transmission spectra of SM18 show that the mineralogy of the sample is dominated by a mixture of phyllosilicate and olivine. SM18 shows an intense peak at 11.2 mu m indicative of olivine (Fig. 1). If we compare SM18 with other CM and metamorphosed CM chondrites, it shows one of the most intense olivine signatures, and therefore a lower proportion of phyllosilicate minerals. The Raman results tend to support a short-duration heating hypothesis. In the ID/IG versus FWHM-D diagram, SM18 appears to be unusual compared to most CM samples, and close to the metamorphosed CM chondrites Pecora Escarpment (PCA) 91008 and PCA 02012. In the case of SM51, infrared spectroscopy reveals that olivine is less abundant than in SM18 and the 10 mu m silicate feature is more similar to that of moderately altered CM chondrites (like Murchison or Queen Alexandra Range [QUE] 97990). Raman spectroscopy does not clearly point to a heating event for SM51 in the I-D/I-G versus FWHM-D diagram. However, TGA analysis suggests that SM51 was slightly dehydrated as the amount of water contained in phyllosilicates is approximately 3.7 wt%, which is higher than SM18, but still lower than phyllosilicate water contents in weakly altered CM chondrites. Altogether, these results confirm that fragments with different secondary histories are present within the Sutter's Mill fall. The dehydration that is clearly observed for SM18 is attributed to a short-duration heating based on the similarity of its Raman spectra to that of PCA 91008. Because of the brecciated nature of Sutter's Mill and the presence of adjacent clasts with different thermal histories, impacts that can efficiently fragment and heat porous materials are the preferred heat source