63 research outputs found

    Immunomodulatory role of adipose-derived stem cells on equine endometriosis

    Get PDF
    Endometriosis is a degenerative process due to a chronic inflammatory damage leading to extracellular matrix components deposition and glandular fibrosis. It is known that mesenchymal stem cells secrete a wide range of bioactive molecules, some of them modulating the immune inflammatory response, and others providing regeneration and remodeling of injured tissue. We have performed in vitro experiments in order to analyze the capability of allogenic equine adipose-derived stem cells (ADSCs) to infiltrate mares' endometrial tissues and to stimulate the expression of cytokines and metallopeptidases. Differences in the biologic response to the exposure to ADSCs between pathological and healthy endometrial tissue have been identified. These results could challenge researchers to progress forward with future studies for the development of a biological therapy with a possible application in translational medicine

    Intake of palmitic acid and its association with metabolic flexibility in middle-aged individuals: a preliminary study

    Get PDF
    Objective: This study aimed to assess the relationship between dietary palmitic acid (PA) intake and its association with body fat deposition and metabolic flexibility (MF) in middle-aged healthy individuals. Methods: Fifteen healthy participants (n = 15; 6 males, 9 females) with a mean age of 54 were enlisted. They were subjected to graded exercise tests using a cycle ergometer coupled with a calorimeter. Respiratory gas exchange was evaluated to determine two MF parameters. First, the MF index was derived by multiplying peak fatty acid oxidation (PFO) per kg of fat-free mass (FFM) with the percentage of VO2max at PFO. The second parameter, peak energy substrates’ oxidation (aka PESO), was computed by aggregating the kilocalories from PFO and peak carbohydrate oxidation, normalized per kg FFM. Dietary intake was gauged using a 7-day dietary record. Spearman’s regression was employed to analyze the association between dietary intake of specific fat classes, PA, MF parameters, and body fat percentage. Results: Preliminary results demonstrate that dietary saturated fatty acids (SFA) within physiological limits correlate with enhanced substrate oxidation capacity. This suggests augmented MF in middle-aged subjects. Among dietary SFA, PA was identified as the primary factor in this favorable correlation. Conclusions: Our initial observations, even though preliminary, strongly suggest a beneficial association between PA intake, MF, and body fat percentage. This underscores the potential nutritional importance of PA in promoting MF

    Citron Kinase Deficiency Leads to Chromosomal Instability and TP53-Sensitive Microcephaly

    Get PDF
    Mutations in citron (CIT), leading to loss or inactivation of the citron kinase protein (CITK), cause primary microcephaly in humans and rodents, associated with cytokinesis failure and apoptosis in neural progenitors. We show that CITK loss induces DNA damage accumulation and chromosomal instability in both mammals and Drosophila. CITK-deficient cells display "spontaneous" DNA damage, increased sensitivity to ionizing radiation, and defective recovery from radiation-induced DNA lesions. In CITK-deficient cells, DNA double-strand breaks increase independently of cytokinesis failure. Recruitment of RAD51 to DNA damage foci is compromised by CITK loss, and CITK physically interacts with RAD51, suggesting an involvement of CITK in homologous recombination. Consistent with this scenario, in doubly CitK and Trp53 mutant mice, neural progenitor cell death is dramatically reduced; moreover, clinical and neuroanatomical phenotypes are remarkably improved. Our results underscore a crucial role of CIT in the maintenance of genomic integrity during brain development

    Outcomes of COVID-19 patients intubated after failure of non-invasive ventilation: a multicenter observational study

    Get PDF
    The efficacy of non-invasive ventilation (NIV) in acute respiratory failure secondary to SARS-CoV-2 infection remains controversial. Current literature mainly examined efficacy, safety and potential predictors of NIV failure provided out of the intensive care unit (ICU). On the contrary, the outcomes of ICU patients, intubated after NIV failure, remain to be explored. The aims of the present study are: (1) investigating in-hospital mortality in coronavirus disease 2019 (COVID-19) ICU patients receiving endotracheal intubation after NIV failure and (2) assessing whether the length of NIV application affects patient survival. This observational multicenter study included all consecutive COVID-19 adult patients, admitted into the twenty-five ICUs of the COVID-19 VENETO ICU network (February-April 2020), who underwent endotracheal intubation after NIV failure. Among the 704 patients admitted to ICU during the study period, 280 (40%) presented the inclusion criteria and were enrolled. The median age was 69 [60-76] years; 219 patients (78%) were male. In-hospital mortality was 43%. Only the length of NIV application before ICU admission (OR 2.03 (95% CI 1.06-4.98), p = 0.03) and age (OR 1.18 (95% CI 1.04-1.33), p < 0.01) were identified as independent risk factors of in-hospital mortality; whilst the length of NIV after ICU admission did not affect patient outcome. In-hospital mortality of ICU patients intubated after NIV failure was 43%. Days on NIV before ICU admission and age were assessed to be potential risk factors of greater in-hospital mortality

    A meta-learning algorithm for respiratory flow prediction from FBG-based wearables in unrestrained conditions

    Get PDF
    The continuous monitoring of an individual's breathing can be an instrument for the assessment and enhancement of human wellness. Specific respiratory features are unique markers of the deterioration of a health condition, the onset of a disease, fatigue and stressful circumstances. The early and reliable prediction of high-risk situations can result in the implementation of appropriate intervention strategies that might be lifesaving. Hence, smart wearables for the monitoring of continuous breathing have recently been attracting the interest of many researchers and companies. However, most of the existing approaches do not provide comprehensive respiratory information. For this reason, a meta-learning algorithm based on LSTM neural networks for inferring the respiratory flow from a wearable system embedding FBG sensors and inertial units is herein proposed. Different conventional machine learning approaches were implemented as well to ultimately compare the results. The meta-learning algorithm turned out to be the most accurate in predicting respiratory flow when new subjects are considered. Furthermore, the LSTM model memory capability has been proven to be advantageous for capturing relevant aspects of the breathing pattern. The algorithms were tested under different conditions, both static and dynamic, and with more unobtrusive device configurations. The meta-learning results demonstrated that a short one-time calibration may provide subject-specific models which predict the respiratory flow with high accuracy, even when the number of sensors is reduced. Flow RMS errors on the test set ranged from 22.03 L/min, when the minimum number of sensors was considered, to 9.97 L/min for the complete setting (target flow range: 69.231 Â± 21.477 L/min). The correlation coefficient r between the target and the predicted flow changed accordingly, being higher (r = 0.9) for the most comprehensive and heterogeneous wearable device configuration. Similar results were achieved even with simpler settings which included the thoracic sensors (r ranging from 0.84 to 0.88; test flow RMSE = 10.99 L/min, when exclusively using the thoracic FBGs). The further estimation of respiratory parameters, i.e., rate and volume, with low errors across different breathing behaviors and postures proved the potential of such approach. These findings lay the foundation for the implementation of reliable custom solutions and more sophisticated artificial intelligence-based algorithms for daily life health-related applications

    Citron Kinase Deficiency Leads to Chromosomal Instability and TP53-Sensitive Microcephaly

    Get PDF
    Mutations in citron (CIT), leading to loss or inactivation of the citron kinase protein (CITK), cause primary microcephaly in humans and rodents, associated with cytokinesis failure and apoptosis in neural progenitors. We show that CITK loss induces DNA damage accumulation and chromosomal instability in both mammals and Drosophila. CITK-deficient cells display “spontaneous” DNA damage, increased sensitivity to ionizing radiation, and defective recovery from radiation-induced DNA lesions. In CITK-deficient cells, DNA double-strand breaks increase independently of cytokinesis failure. Recruitment of RAD51 to DNA damage foci is compromised by CITK loss, and CITK physically interacts with RAD51, suggesting an involvement of CITK in homologous recombination. Consistent with this scenario, in doubly CitK and Trp53 mutant mice, neural progenitor cell death is dramatically reduced; moreover, clinical and neuroanatomical phenotypes are remarkably improved. Our results underscore a crucial role of CIT in the maintenance of genomic integrity during brain development

    Static compliance and driving pressure are associated with ICU mortality in intubated COVID-19 ARDS

    Get PDF
    Background Pathophysiological features of coronavirus disease 2019-associated acute respiratory distress syndrome (COVID-19 ARDS) were indicated to be somewhat different from those described in nonCOVID-19 ARDS, because of relatively preserved compliance of the respiratory system despite marked hypoxemia. We aim ascertaining whether respiratory system static compliance (Crs), driving pressure (DP), and tidal volume normalized for ideal body weight (VT/kg IBW) at the 1st day of controlled mechanical ventilation are associated with intensive care unit (ICU) mortality in COVID-19 ARDS. Methods Observational multicenter cohort study. All consecutive COVID-19 adult patients admitted to 25 ICUs belonging to the COVID-19 VENETO ICU network (February 28th-April 28th, 2020), who received controlled mechanical ventilation, were screened. Only patients fulfilling ARDS criteria and with complete records of Crs, DP and VT/kg IBW within the 1st day of controlled mechanical ventilation were included. Crs, DP and VT/kg IBW were collected in sedated, paralyzed and supine patients. Results A total of 704 COVID-19 patients were screened and 241 enrolled. Seventy-one patients (29%) died in ICU. The logistic regression analysis showed that: (1) Crs was not linearly associated with ICU mortality (p value for nonlinearity = 0.01), with a greater risk of death for values < 48 ml/cmH(2)O; (2) the association between DP and ICU mortality was linear (p value for nonlinearity = 0.68), and increasing DP from 10 to 14 cmH(2)O caused significant higher odds of in-ICU death (OR 1.45, 95% CI 1.06-1.99); (3) VT/kg IBW was not associated with a significant increase of the risk of death (OR 0.92, 95% CI 0.55-1.52). Multivariable analysis confirmed these findings. Conclusions Crs < 48 ml/cmH(2)O was associated with ICU mortality, while DP was linearly associated with mortality. DP should be kept as low as possible, even in the case of relatively preserved Crs, irrespective of VT/kg IBW, to reduce the risk of death

    Clinical global impression-severity score as a reliable measure for routine evaluation of remission in schizophrenia and schizoaffective disorders

    Get PDF
    Aims: This study aimed to compare the performance of Positive and Negative Syndrome Scale (PANSS) symptom severity criteria established by the Remission in Schizophrenia Working Group (RSWG) with criteria based on Clinical Global Impression (CGI) severity score. The 6-month duration criterion was not taken into consideration. Methods: A convenience sample of 112 chronic psychotic outpatients was examined. Symptomatic remission was evaluated according to RSWG severity criterion and to a severity criterion indicated by the overall score obtained at CGI-Schizophrenia (CGI-SCH) rating scale (≤3) (CGI-S). Results: Clinical remission rates of 50% and 49.1%, respectively, were given by RSWG and CGI-S, with a significant level of agreement between the two criteria in identifying remitted and non-remitted cases. Mean scores at CGI-SCH and PANSS scales were significantly higher among remitters, independent of the remission criteria adopted. Measures of cognitive functioning were largely independent of clinical remission evaluated according to both RSWG and CGI-S. When applying RSWG and CGI-S criteria, the rates of overall good functioning yielded by Personal and Social Performance scale (PSP) were 32.1% and 32.7%, respectively, while the mean scores at PSP scale differed significantly between remitted and non-remitted patients, independent of criteria adopted. The proportion of patients judged to be in a state of well-being on Social Well-Being Under Neuroleptics-Short Version scale (SWN-K) were, respectively, 66.1% and 74.5% among remitters according to RSWG and CGI-S; the mean scores at the SWN scale were significantly higher only among remitters according to CGI-S criteria. Conclusions: CGI severity criteria may represent a valid and user-friendly alternative for use in identifying patients in remission, particularly in routine clinical practic
    • …
    corecore