19 research outputs found

    Biomechanics of Cell Membrane

    No full text
    This Special Issue is focused on measuring and characterizing the mechanical and adhesive properties of cells and membranes [...

    Characterization of Cell Scaffolds by Atomic Force Microscopy

    No full text
    This review reports on the use of the atomic force microscopy (AFM) in the investigation of cell scaffolds in recent years. It is shown how the technique is able to deliver information about the scaffold surface properties (e.g., topography), as well as about its mechanical behavior (Young’s modulus, viscosity, and adhesion). In addition, this short review also points out the utilization of the atomic force microscope technique beyond its usual employment in order to investigate another type of basic questions related to materials physics, chemistry, and biology. The final section discusses in detail the novel uses that those alternative measuring modes can bring to this field in the future

    Uses of Laccases in the Food Industry

    Get PDF
    Laccases are an interesting group of multi copper enzymes, which have received much attention of researchers in the last decades due to their ability to oxidise both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. This makes these biocatalysts very useful for their application in several biotechnological processes, including the food industry. Thus, laccases hold great potential as food additives in food and beverage processing. Being energy-saving and biodegradable, laccase-based biocatalysts fit well with the development of highly efficient, sustainable, and eco-friendly industries

    Cholesterol Increases Lipid Binding Rate and Changes Binding Behavior of <i>Bacillus thuringiensis</i> Cytolytic Protein

    No full text
    Cytolytic protein (Cyt) is a member of insecticidal proteins produced by Bacillus thuringiensis. Cyt protein has activity against insect cells and mammalian cells, which differ in lipid and cholesterol composition. This study presents the lipid binding behavior of Cyt2Aa2 protein on model membranes containing different levels of cholesterol content by combining Quartz Crystal Microbalance with Dissipation (QCM-D) and Atomic Force Microscopy (AFM). QCM-D results revealed that cholesterol enhances the binding rate of Cyt2Aa2 protein onto lipid bilayers. In addition, the thicker lipid bilayer was observed for the highest cholesterol content. These results were confirmed by AFM. The analysis of protein surface coverage as a function of time showed a slower process for 5:0 and 5:0.2 (POPC:Chol) ratios than for 5:1 and 5:2 (POPC:Chol) ratios. Significantly, the Cyt2Aa2-lipid binding behavior and the protein&#8315;lipid layer were different for the 5:3 (POPC:Chol) ratio. Furthermore, AFM images revealed a transformation of Cyt2Aa2/lipid layer structure from strip pattern to ring shape structures (which showed a strong repulsion with AFM tip). In summary, cholesterol increases the binding rate and alters the lipid binding behavior of Cyt2Aa2 protein, although it is not required for Cyt2Aa2 protein binding onto lipid bilayers

    Analyzing Spatial Behavior of Backcountry Skiers in Mountain Protected Areas Combining GPS Tracking and Graph Theory

    No full text
    Mountain protected areas (PAs) aim to preserve vulnerable environments and at the same time encourage numerous outdoor leisure activities. Understanding the way people use natural environments is crucial to balance the needs of visitors and site capacities. This study aims to develop an approach to evaluate the structure and use of designated skiing zones in PAs combining Global Positioning System (GPS) tracking and analytical methods based on graph theory. The study is based on empirical data (n = 609 GPS tracks of backcountry skiers) collected in Tatra National Park (TNP), Poland. The physical structure of the entire skiing zones system has been simplified into a graph structure (structural network; undirected graph). In a second step, the actual use of the area by skiers (functional network; directed graph) was analyzed using a graph-theoretic approach. Network coherence (connectivity indices: ÎČ, Îł, α), movement directions at path segments, and relative importance of network nodes (node centrality measures: degree, betweenness, closeness, and proximity prestige) were calculated. The system of designated backcountry skiing zones was not evenly used by the visitors. Therefore, the calculated parameters differ significantly between the structural and the functional network. In particular, measures related to the actually used trails are of high importance from the management point of view. Information about the most important node locations can be used for planning sign-posts, on-site maps, interpretative boards, or other tourist infrastructure

    Structure, Surface Interactions, and Compressibility of Bacterial S-Layers through Scanning Force Microscopy and the Surface Force Apparatus

    No full text
    Two-dimensional crystalline bacterial surface layers (S-layers) are found in a broad range of bacteria and archaea as the outermost cell envelope component. The self-assembling properties of the S-layers permit them to recrystallize on solid substrates. Beyond their biological interest as S-layers, they are currently used in nanotechnology to build supramolecular structures. Here, the structure of S-layers and the interactions between them are studied through surface force techniques. Scanning force microscopy has been used to study the structure of recrystallized S-layers from Bacillus sphaericus on mica at different 1:1 electrolyte concentrations. They give evidence of the two-dimensional organization of the proteins and reveal small corrugations of the S-layers formed on mica. The lattice parameters of the S-layers were a = b = 14 nm, γ = 90° and did not depend on the electrolyte concentration. The interaction forces between recrystallized S-layers on mica were studied with the surface force apparatus as a function of electrolyte concentration. Force measurements show that electrostatic and steric interactions are dominant at long distances. When the S-layers are compressed they exhibit elastic behavior. No adhesion between recrystallized layers takes place. We report for the first time, to our knowledge, the value of the compressibility modulus of the S-layer (0.6 MPa). The compressibility modulus is independent on the electrolyte concentration, although loads of 20 mN m(−1) damage the layer locally. Control experiments with denatured S-proteins show similar elastic properties under compression but they exhibit adhesion forces between proteins, which were not observed in recrystallized S-layers

    Recombinant Peptide Production Softens <i>Escherichia coli</i> Cells and Increases Their Size during C-Limited Fed-Batch Cultivation

    No full text
    Stress-associated changes in the mechanical properties at the single-cell level of Escherichia coli (E. coli) cultures in bioreactors are still poorly investigated. In our study, we compared peptide-producing and non-producing BL21(DE3) cells in a fed-batch cultivation with tightly controlled process parameters. The cell growth, peptide content, and cell lysis were analysed, and changes in the mechanical properties were investigated using atomic force microscopy. Recombinant-tagged somatostatin-28 was expressed as soluble up to 197 ± 11 mg g−1. The length of both cultivated strains increased throughout the cultivation by up to 17.6%, with nearly constant diameters. The peptide-producing cells were significantly softer than the non-producers throughout the cultivation, and respective Young’s moduli decreased by up to 57% over time. A minimum Young’s modulus of 1.6 MPa was observed after 23 h of the fed-batch. Furthermore, an analysis of the viscoelastic properties revealed that peptide-producing BL21(DE3) appeared more fluid-like and softer than the non-producing reference. For the first time, we provide evidence that the physical properties (i.e., the mechanical properties) on the single-cell level are significantly influenced by the metabolic burden imposed by the recombinant peptide expression and C-limitation in bioreactors
    corecore