429 research outputs found
Recommended from our members
Aerosol Jet Printing-Enabled Dual-Function Electrochemical and Colorimetric Biosensor for SARS-CoV-2 Detection.
An aerosol jet printing-enabled dual-function biosensor for the sensitive detection of pathogens using SARS-CoV-2 RNA as an example has been developed. A CRISPR-Cas13:guide-RNA complex is activated in the presence of a target RNA, leading to the collateral trans-cleavage of ssRNA probes that contain a horseradish peroxidase (HRP) tag. This, in turn, catalyzes the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by HRP, resulting in a color change and electrochemical signal change. The colorimetric and electrochemical sensing protocol does not require complicated target amplification and probe immobilization and exhibits a detection sensitivity in the femtomolar range. Additionally, our biosensor demonstrates a wide dynamic range of 5 orders of magnitude. This low-cost aerosol inkjet printing technique allows for an amplification-free and integrated dual-function biosensor platform, which operates at physiological temperature and is designed for simple, rapid, and accurate point-of-care (POC) diagnostics in either low-resource settings or hospitals
Novel statistical approaches for non-normal censored immunological data: analysis of cytokine and gene expression data
Background: For several immune-mediated diseases, immunological analysis will become more complex in the future with datasets in which cytokine and gene expression data play a major role. These data have certain characteristics that require sophisticated statistical analysis such as strategies for non-normal distribution and censoring. Additionally, complex and multiple immunological relationships need to be adjusted for potential confounding and interaction effects.
Objective: We aimed to introduce and apply different methods for statistical analysis of non-normal censored cytokine and gene expression data. Furthermore, we assessed the performance and accuracy of a novel regression approach in order to allow adjusting for covariates and potential confounding.
Methods: For non-normally distributed censored data traditional means such as the Kaplan-Meier method or the generalized Wilcoxon test are described. In order to adjust for covariates the novel approach named Tobit regression on ranks was introduced. Its performance and accuracy for analysis of non-normal censored cytokine/gene expression data was evaluated by a simulation study and a statistical experiment applying permutation and bootstrapping.
Results: If adjustment for covariates is not necessary traditional statistical methods are adequate for non-normal censored data. Comparable with these and appropriate if additional adjustment is required, Tobit regression on ranks is a valid method. Its power, type-I error rate and accuracy were comparable to the classical Tobit regression.
Conclusion: Non-normally distributed censored immunological data require appropriate statistical methods. Tobit regression on ranks meets these requirements and can be used for adjustment for covariates and potential confounding in large and complex immunological datasets
Gold Nanoparticle Enabled Localized Surface Plasmon Resonance on Unique Gold Nanomushroom Structures for On‐Chip CRISPR‐Cas13a Sensing
Abstract A novel localized surface plasmon resonance (LSPR) system based on the coupling of gold nanomushrooms (AuNMs) and gold nanoparticles (AuNPs) is developed to enable a significant plasmonic resonant shift. The AuNP size, surface chemistry, and concentration are characterized to maximize the LSPR effect. A 31 nm redshift is achieved when the AuNMs are saturated by the AuNPs. This giant redshift also increases the full width of the spectrum and is explained by the 3D finite‐difference time‐domain (FDTD) calculation. In addition, this LSPR substrate is packaged in a microfluidic cell and integrated with a CRISPR‐Cas13a RNA detection assay for the detection of the SARS‐CoV‐2 RNA targets. Once activated by the target, the AuNPs are cleaved from linker probes and randomly deposited on the AuNM substrate, demonstrating a large redshift. The novel LSPR chip using AuNP as an indicator is simple, specific, isothermal, and label‐free; and thus, provides a new opportunity to achieve the next generation multiplexing and sensitive molecular diagnostic system
The role of venues in structuring HIV, sexually transmitted infections, and risk networks among men who have sex with men.
Background
Venues form part of the sampling frame for time-location sampling, an approach often used for HIV surveillance. While sampling location is often regarded as a nuisance factor, venues may play a central role in structuring risk networks. We investigated individual reports of risk behaviors and infections among men who have sex with men (MSM) attending different venues to examine structuring of HIV risk behaviors. However, teasing apart ‘risky people’ from ‘risky places’ is difficult, as individuals cannot be randomized to attend different venues. However, we can emulate this statistically using marginal structural models, which inversely weight individuals according to their estimated probability of attending the venue.
Methods
We conducted a cross-sectional survey of 609 MSM patrons of 14 bars in San Diego, California, recruited using the Priorities for Local AIDS Control Efforts (PLACE) methodology, which consists of a multi-level identification and assessment of venues for HIV risk through population surveys.
Results and Discussion
Venues differed by many factors, including participants’ reported age, ethnicity, number of lifetime male partners, past sexually transmitted infection (STI), and HIV status. In multivariable marginal structural models, venues demonstrated structuring of HIV+ status, past STI, and methamphetamine use, independently of individual-level characteristics.
Conclusions
Studies using time-location sampling should consider venue as an important covariate, and the use of marginal structural models may help to identify risky venues. This may assist in widespread, economically feasible and sustainable targeted surveillance and prevention. A more mechanistic understanding of how 'risky venues' emerge and structure risk is needed
An Ecological Approach to Prospective and Retrospective Timing of Long Durations: A Study Involving Gamers
To date, most studies comparing prospective and retrospective timing have failed to use long durations and tasks with a certain degree of ecological validity. The present study assessed the effect of the timing paradigm on playing video games in a “naturalistic environment” (gaming centers). In addition, as it involved gamers, it provided an opportunity to examine the effect of gaming profile on time estimation. A total of 116 participants were asked to estimate prospectively or retrospectively a video game session lasting 12, 35 or 58 minutes. The results indicate that time is perceived as longer in the prospective paradigm than in the retrospective one, although the variability of estimates is the same. Moreover, the 12-minute session was perceived as longer, proportionally, than the 35- and 58-minute sessions. The study also revealed that the number of hours participants spent playing video games per week was a significant predictor of time estimates. To account for the main findings, the differences between prospective and retrospective timing are discussed in quantitative terms using a proposed theoretical framework, which states that both paradigms use the same cognitive processes, but in different proportions. Finally, the hypothesis that gamers play more because they underestimate time is also discussed
Transgenic overexpression of miR-133a in skeletal muscle
<p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of non-coding regulatory RNAs of ~22 nucleotides in length. miRNAs regulate gene expression post-transcriptionally, primarily by associating with the 3' untranslated region (UTR) of their regulatory target mRNAs. Recent work has begun to reveal roles for miRNAs in a wide range of biological processes, including cell proliferation, differentiation and apoptosis. Many miRNAs are expressed in cardiac and skeletal muscle, and dysregulated miRNA expression has been correlated with muscle-related disorders. We have previously reported that the expression of muscle-specific miR-1 and miR-133 is induced during skeletal muscle differentiation and miR-1 and miR-133 play central regulatory roles in myoblast proliferation and differentiation in vitro.</p> <p>Methods</p> <p>In this study, we measured the expression of miRNAs in the skeletal muscle of mdx mice, an animal model for human muscular dystrophy. We also generated transgenic mice to overexpress miR-133a in skeletal muscle.</p> <p>Results</p> <p>We examined the expression of miRNAs in the skeletal muscle of <it>mdx </it>mice. We found that the expression of muscle miRNAs, including miR-1a, miR-133a and miR-206, was up-regulated in the skeletal muscle of <it>mdx </it>mice. In order to further investigate the function of miR-133a in skeletal muscle in vivo, we have created several independent transgenic founder lines. Surprisingly, skeletal muscle development and function appear to be unaffected in miR-133a transgenic mice.</p> <p>Conclusions</p> <p>Our results indicate that miR-133a is dispensable for the normal development and function of skeletal muscle.</p
- …