9,425 research outputs found

    Regenerative cooling design and analysis computer program

    Get PDF
    Program evaluates influences of heat transfer, stress, and cycle life. Coolant passages may be tubes or channels, with or without gas-side wall coating. Program options include two-dimensional thermal analysis model of tube or channel cross-section using relaxation technique with variable number of nodes

    Integral Glass Encapsulation for Solar Arrays

    Get PDF
    Work reported was performed during the period from August 1977 to December 1978. The program objective was to continue the development of electrostatic bonding (ESB) as an encapsulation technique for terrestrial cells. Economic analyses shows that this process can be a cost-effective method of producing reliable, long lifetime solar modules. When considered in sufficient volume, both material and equipment costs are competitive with conventional encapsulation systems. In addition, the possibility of integrating cell fabrication into the encapsulation process, as in the case of the preformed cell contacts discussed in this report, offers the potential of significant overall systems cost reduction

    Effects of excitonic diffusion on stimulated emission in nanocrystalline ZnO

    Get PDF
    We present optically-pumped emission data for ZnO, showing that high excitation effects and stimulated emission / lasing are observed in nanocrystalline ZnO thin films at room temperature, although such effects are not seen in bulk material of better optical quality. A simple model of exciton density profiles is developed which explains our results and those of other authors. Inhibition of exciton diffusion in nanocrystalline samples compared to bulk significantly increases exciton densities in the former, leading, via the nonlinear dependence of emission in the exciton bands on the pump intensity, to large increases in emission and to stimulated emission

    An evolutionary perspective on the kinome of malaria parasites

    Get PDF
    Malaria parasites belong to an ancient lineage that diverged very early from the main branch of eukaryotes. The approximately 90-member plasmodial kinome includes a majority of eukaryotic protein kinases that clearly cluster within the AGC, CMGC, TKL, CaMK and CK1 groups found in yeast, plants and mammals, testifying to the ancient ancestry of these families. However, several hundred millions years of independent evolution, and the specific pressures brought about by first a photosynthetic and then a parasitic lifestyle, led to the emergence of unique features in the plasmodial kinome. These include taxon-restricted kinase families, and unique peculiarities of individual enzymes even when they have homologues in other eukaryotes. Here, we merge essential aspects of all three malaria-related communications that were presented at the Evolution of Protein Phosphorylation meeting, and propose an integrated discussion of the specific features of the parasite's kinome and phosphoproteome

    Symplectic No-core Shell-model Approach to Intermediate-mass Nuclei

    Full text link
    We present a microscopic description of nuclei in an intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through fifteen major shells to accommodate particle excitations that appear critical to highly-deformed spatial structures and the convergence of associated observables.Comment: 9 pages, 8 figure
    corecore