10 research outputs found

    Liquid Crystalline Phase Formation in Suspensions of Solid Trimyristin Nanoparticles

    No full text
    The presence of liquid crystalline phases in suspensions of solid lipid nanoparticles can increase the risk of their gelling upon administration through fine needles. Here we study the formation of liquid crystalline phases in aqueous suspensions of platelet-like shaped solid lipid nanoparticles. A native lecithin-stabilized trimyristin (20 wt %) suspension was investigated at different dilution levels by small-angle X-ray scattering (SAXS) and visual inspection of their birefringence between two crossed polarizers. For trimyristin concentrations φ<sub>MMM</sub> < 6 wt %, the dispersed platelets are well separated from each other whereas they start to self-assemble into stacked lamellae for 6 wt % ≤ φ<sub>MMM</sub> < 12 wt %. For φ<sub>MMM</sub> ≥ 12 wt %, the SAXS patterns become increasingly anisotropic, which is a signature of an evolving formation of a preferred orientation of the platelets on a microscopic scale. Simultaneously, the suspensions become birefringent, which proves the existence of an anisotropic liquid crystalline phase formed in the still low viscous liquid suspensions. Spatially resolved SAXS scans and polarization microscopy indicate rather small domains in the (sub)­micrometer size range in the nematic liquid crystalline phase and the presence of birefringent droplets (tactoids). The observed critical concentrations for the formation of stacks and the liquid crystalline phase are significantly higher as for equivalent suspensions prepared from triglycerides with longer chains. This can be explained with the lower aspect ratio of trimyristin platelets. Special emphasis is put on the isotropic–liquid crystalline phase transition as a function of the ionic strength of the dispersion medium and φ<sub>MMM</sub>. Higher salt concentrations allow shifting of the phase transition to higher trimyristin concentrations. This can be attributed to a partial screening of the repulsive forces between the platelets, which allows higher packing densities within the platelet stacks and of remaining isolated platelets

    <i>In Situ</i> Study on the Evolution of Multimodal Particle Size Distributions of ZnO Quantum Dots: Some General Rules for the Occurrence of Multimodalities

    No full text
    Properties of small semiconductor nanoparticles (NPs) are strongly governed by their size. Precise characterization is a key requirement for tailored dispersities and thus for high-quality devices. Results of a careful analysis of particle size distributions (PSDs) of ZnO are presented combining advantages of UV/vis absorption spectroscopy, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Our study reveals that careful cross-validation of these different methods is mandatory to end up with reliable resolution. PSDs of ZnO NPs are multimodal on a size range of 2–8 nm, a finding that is not yet sufficiently addressed. In the second part of our work the evolution of PSDs was studied using <i>in situ</i> SAXS. General principles for the appearance of multimodalities covering a temperature range between 15 and 45 °C were found which are solely determined by the aging state indicated by the size of the medium-sized fraction. Whenever this fraction exceeds a critical diameter, a new multimodality is identified, independent of the particular time–temperature combination. A fraction of larger particles aggregates first before a fraction of smaller particles is detected. Fixed multimodalities have not yet been addressed adequately and could only be evidenced due to careful size analysis

    Mesoscopic Structures of Triglyceride Nanosuspensions Studied by Small-Angle X‑ray and Neutron Scattering and Computer Simulations

    No full text
    Aqueous suspensions of platelet-like shaped tripalmitin nanocrystals are studied here at high tripalmitin concentrations (10 wt % tripalmitin) for the first time by a combination of small-angle X-ray and neutron scattering (SAXS and SANS). The suspensions are stabilized by different lecithins, namely, DLPC, DOPC, and the lecithin blend S100. At such high concentrations the platelets start to self-assemble in stacks, which causes interference maxima at low <i>Q</i>-values in the SAXS and SANS patterns, respectively. It is found that the stack-related interference maxima are more pronounced for the suspension stabilized with DOPC and in particular DLPC, compared to suspensions stabilized by S100. By use of the X-ray and neutron powder pattern simulation analysis (XNPPSA), the SAXS and SANS patterns of the native tripalmitin suspensions could only be reproduced simultaneously when assuming the presence of both isolated nanocrystals and stacks of nanocrystals of different size in the simulation model of the dispersions. By a fit of the simulated SAXS and SANS patterns to the experimental data, a distribution of the stack sizes and their volume fractions is determined. The volume fraction of stacklike platelet assemblies is found to rise from 70% for S100-stabilized suspensions to almost 100% for the DLPC-stabilized suspensions. The distribution of the platelet thicknesses could be determined with molecular resolution from a combined analysis of the SAXS and SANS patterns of the corresponding diluted tripalmitin (3 wt %) suspensions. In accordance with microcalorimetric data, it could be concluded that the platelets in the suspensions stabilized with DOPC, and in particular DLPC, are significantly thinner than those stabilized with S100. The DLPC-stabilized suspensions exhibit a significantly narrower platelet thickness distribution compared to DOPC- and S100-stabilized suspensions. The smaller thicknesses for the DLPC- and DOPC-stabilized platelets explain their higher tendency to self-assemble in stacks. The finding that the nanoparticles of the suspension stabilized by the saturated lecithin DLPC crystallize in the stable β-tripalmitin modification with its characteristic platelet-like shape is surprising and can be explained by the fact that the main phase transformation temperature for DLPC is, as for unsaturated lecithins like DOPC and S100, well below the crystallization temperature of the supercooled tripalmitin emulsion droplets

    Influence of Tail Groups during Functionalization of ZnO Nanoparticles on Binding Enthalpies and Photoluminescence

    No full text
    We report on the tailoring of ZnO nanoparticle (NP) surfaces by catechol derivatives (CAT) with different functionalities: <i>tert</i>-butyl group (tertCAT), hydrogen (pyroCAT), aromatic ring (naphCAT), ester group (esterCAT), and nitro group (nitroCAT). The influence of electron-donating/-withdrawing properties on enthalpy of ligand binding (Δ<i>H</i>) was resolved and subsequently linked with optical properties. First, as confirmed by ultraviolet/visible (UV/vis) and Fourier transform infrared (FT-IR) spectroscopy results, all CAT molecules chemisorbed to ZnO NPs, independent of the distinct functionality. Interestingly, the ζ-potentials of ZnO after functionalization shifted to more negative values. Then, isothermal titration calorimetry (ITC) and a mass-based method were applied to resolve the heat release during ligand binding and the adsorption isotherm, respectively. However, both heat- and mass-based approaches alone did not fully resolve the binding enthalpy of each molecule adsorbing to the ZnO surface. This is mainly due to the fact that the Langmuir model oversimplifies the underlying adsorption mechanism, at least for some of the tested CAT molecules. Therefore, a new, fitting-free approach was developed to directly access the adsorption enthalpy per molecule during functionalization by dividing the heat release measured via ITC by the amount of bound molecules determined from the adsorption isotherm. Finally, the efficiency of quenching the visible emission caused by ligand binding was investigated by photoluminescence (PL) spectroscopy, which turned out to follow the same trend as the binding enthalpy. Thus, the functionality of ligand molecules governs the binding enthalpy to the particle surface, which in turn, at least in the current case of ZnO, is an important parameter for the quenching of visible emission. We believe that establishing such correlations is an important step toward a more general way of selecting and designing ligand molecules for surface functionalization. This allows developing strategies for tailored colloidal surfaces beyond empirically driven formulation on a case by case basis

    Adsorption, Ordering, and Metalation of Porphyrins on MgO Nanocube Surfaces: The Directional Role of Carboxylic Anchoring Groups

    No full text
    The understanding of porphyrin adsorption on oxide nanoparticles including knowledge about coverages and adsorbate geometries is a prerequisite for the improvement and optimization of hybrid materials. The combination of molecular spectroscopies with small-angle X-ray scattering provides molecular insights into porphyrin adsorption on MgO nanocube dispersions in organic solvents. In particular, we address the influence of terminal carboxyl groups on the adsorption of free base porphyrins, on their chemical binding, on the metalation reaction as well as on the coverage and orientation of adsorbate molecules. We compare the free base form 5,10,15,20-tetraphenyl-21,23<i>H</i>-porphyrin (2HTPP) with the carboxyl-functionalized 5,10,15,20-tetrakis­(4-carboxyphenyl)-21,23<i>H</i>-porphyrin (2HTCPP) and show that without carboxylic anchoring groups the free base form metalates on the nanocube surface and adopts a flat-lying adsorbate geometry. The saturation limit for flat-lying adsorption on nanocubes with an average edge length of 6 nm corresponds to 90 ± 14 molecules per particle. This limit is surpassed when 2HTCPP molecules attach via their terminal carboxyl groups to the surface. The resulting upright adsorption geometry suppresses self-metalation, on the one hand, and allows for much higher porphyrin coverages, on the other (at porphyrin concentrations in the stock solution of 2 × 10<sup>–2</sup> mol·L<sup>–1</sup>). UV–vis diffuse reflectance results are perfectly consistent with conclusions from SAXS data analysis. The experiments reveal concentration dependent 2HTCPP coverages in the range between 0.4 to 1.9 molecules nm<sup>–2</sup> which correspond to the formation of a shell of upright standing porphyrin molecules around the MgO nanocubes. In contrast, after adsorption and metalation of nonfunctionalized 2HTPP the resulting porphyrin shells are in the range of a tenth of a nanometer and thus too thin to be captured by SAXS measurements. Related insights advance our opportunities to prepare well-defined nanohybrids containing highly organized porphyrin films

    Investigating H<sub>2</sub> Sorption in a Fluorinated Metal–Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering

    No full text
    Simulations of H<sub>2</sub> sorption were performed in a metal–organic framework (MOF) consisting of Zn<sup>2+</sup> ions coordinated to 1,2,4-triazole and tetrafluoroterephthalate ligands (denoted [Zn­(trz)­(tftph)] in this work). The simulated H<sub>2</sub> sorption isotherms reported in this work are consistent with the experimental data for the state points considered. The experimental H<sub>2</sub> isosteric heat of adsorption (<i>Q</i><sub>st</sub>) values for this MOF are approximately 8.0 kJ mol<sup>–1</sup> for the considered loading range, which is in the proximity of those determined from simulation. The experimental inelastic neutron scattering (INS) spectra for H<sub>2</sub> in [Zn­(trz)­(tftph)] reveal at least two peaks that occur at low energies, which corresponds to high barriers to rotation for the respective sites. The most favorable sorption site in the MOF was identified from the simulations as sorption in the vicinity of a metal–coordinated H<sub>2</sub>O molecule, an exposed fluorine atom, and a carboxylate oxygen atom in a confined region in the framework. Secondary sorption was observed between the fluorine atoms of adjacent tetrafluoroterephthalate ligands. The H<sub>2</sub> molecule at the primary sorption site in [Zn­(trz)­(tftph)] exhibits a rotational barrier that exceeds that for most neutral MOFs with open-metal sites according to an empirical phenomenological model, and this was further validated by calculating the rotational potential energy surface for H<sub>2</sub> at this site

    Evidence of Tailoring the Interfacial Chemical Composition in Normal Structure Hybrid Organohalide Perovskites by a Self-Assembled Monolayer

    No full text
    Current–voltage hysteresis is a major issue for normal architecture organo-halide perovskite solar cells. In this manuscript we reveal a several-angstrom thick methylammonium iodide-rich interface between the perovskite and the metal oxide. Surface functionalization via self-assembled monolayers allowed us to control the composition of the interface monolayer from Pb poor to Pb rich, which, in parallel, suppresses hysteresis in perovskite solar cells. The bulk of the perovskite films is not affected by the interface engineering and remains highly crystalline in the surface-normal direction over the whole film thickness. The subnanometer structural modifications of the buried interface were revealed by X-ray reflectivity, which is most sensitive to monitor changes in the mass density of only several-angstrom thin interfacial layers as a function of substrate functionalization. From Kelvin probe force microscopy study on a solar cell cross section, we further demonstrate local variations of the potential on different electron-transporting layers within a solar cell. On the basis of these findings, we present a unifying model explaining hysteresis in perovskite solar cells, giving an insight into one crucial aspect of hysteresis for the first time and paving way for new strategies in the field of perovskite-based opto-electronic devices

    Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells

    No full text
    Development of high-quality organic nanoparticle inks is a significant scientific challenge for the industrial production of solution-processed organic photovoltaics (OPVs) with eco-friendly processing methods. In this work, we demonstrate a novel, robot-based, high-throughput procedure performing automatic poly­(3-hexylthio-phene-2,5-diyl) and indene-C<sub>60</sub> bisadduct nanoparticle ink synthesis in nontoxic alcohols. A novel methodology to prepare particle dispersions for fully functional OPVs by manipulating the particle size and solvent system was studied in detail. The ethanol dispersion with a particle diameter of around 80–100 nm exhibits reduced degradation, yielding a power conversion efficiency of 4.52%, which is the highest performance reported so far for water/alcohol-processed OPV devices. By successfully deploying the high-throughput robot-based approach for an organic nanoparticle ink preparation, we believe that the findings demonstrated in this work will trigger more research interest and effort on eco-friendly industrial production of OPVs

    Understanding and controlling the evolution of nanomorphology and crystallinity of organic bulk-heterojunction blends with solvent vapor annealing

    No full text
    Solvent vapor annealing (SVA) has been shown to significantly improve the device performance of organic bulk-heterojunction solar cells, yet the mechanisms linking nanomorphology, crystallinity of the active layer, and performance are still largely missing. Here, the mechanisms are tackled by correlating the evolution of nanomorphology, crystallinity, and performance with advanced transmission electron microscopy methods systematically. Model system of DRCN5T:PC71BM blends are SVA treated with four solvents differing in their donor and acceptor solubilities. The choice of solvent drastically influences the rate at which the maximum device efficiency establishes, though similar values can be achieved for all solvents. The donor solubility is identified as a key parameter that controls the kinetics of diffusion and crystallization of the blend molecules, resulting in an inverse relationship between optimal annealing time and donor solubility. For the highest efficiency, optimum domain size and single-crystalline nature of DRCN5T fibers are found to be crucial. Moreover, the π–π stacking orientation of the crystallites is directly revealed and related to the nanomorphology, providing insight into the charge carrier transport pathways. Finally, a qualitative model relating morphology, crystallinity, and device efficiency evolution during SVA is presented, which may be transferred to other light-harvesting blends.</p

    Robot-Based High-Throughput Engineering of Alcoholic Polymer: Fullerene Nanoparticle Inks for an Eco-Friendly Processing of Organic Solar Cells

    No full text
    Development of high-quality organic nanoparticle inks is a significant scientific challenge for the industrial production of solution-processed organic photovoltaics (OPVs) with eco-friendly processing methods. In this work, we demonstrate a novel, robot-based, high-throughput procedure performing automatic poly­(3-hexylthio-phene-2,5-diyl) and indene-C<sub>60</sub> bisadduct nanoparticle ink synthesis in nontoxic alcohols. A novel methodology to prepare particle dispersions for fully functional OPVs by manipulating the particle size and solvent system was studied in detail. The ethanol dispersion with a particle diameter of around 80–100 nm exhibits reduced degradation, yielding a power conversion efficiency of 4.52%, which is the highest performance reported so far for water/alcohol-processed OPV devices. By successfully deploying the high-throughput robot-based approach for an organic nanoparticle ink preparation, we believe that the findings demonstrated in this work will trigger more research interest and effort on eco-friendly industrial production of OPVs
    corecore