13,522 research outputs found

    Nonabelian Gauge Symmetry in the Causal Epstein-Glaser Approach

    Full text link
    We present some generalizations of a recently proposed alternative approach to nonabelian gauge theories based on the causal Epstein-Glaser method in perturbative quantum field theory. Nonabelian gauge invariance is defined by a simple commutator relation in every order of perturbation theory separately using only the linear (abelian) BRS-transformations of the asymptotic fields. This condition is sufficient for the unitarity of the S-matrix in the physical subspace. We derive the most general specific coupling compatible with the conditions of nonabelian gauge invariance and normalizability. We explicitly show that the quadrilinear terms, the four-gluon-coupling and the four-ghost-coupling, are generated by our linear condition of nonabelian gauge invariance. Moreover, we work out the required generalizations for linear gauges.Comment: 32 pages, latex-file, no figure

    Observations by human subjects on radiation- induced light flashes in fast-neutron, X-ray, and positive-pion beams

    Get PDF
    Exposure of human subjects to fast neutron beam to determine cause of light flashes observed by astronauts on lunar mission

    Human visual response to nuclear particle exposures

    Get PDF
    Experiments with accelerated helium ions were performed in an effort to localize the site of initial radiation interactions in the eye that lead to light flash observations by astronauts during spaceflight. The character and efficiency of helium ion induction of visual sensations depended on the state of dark adaptation of the retina; also, the same events were seen with different efficiencies and details when particle flux density changed. It was concluded that fast particles cause interactions in the retina, particularly in the receptor layer, and thus give rise to the sensations of light flashes, streaks, and supernovae

    Interplay of spatial dynamics and local adaptation shapes species lifetime distributions and species-area relationships

    Full text link
    The distributions of species lifetimes and species in space are related, since species with good local survival chances have more time to colonize new habitats and species inhabiting large areas have higher chances to survive local disturbances. Yet, both distributions have been discussed in mostly separate communities. Here, we study both patterns simultaneously using a spatially explicit, evolutionary community assembly approach. We present and investigate a metacommunity model, consisting of a grid of patches, where each patch contains a local food web. Species survival depends on predation and competition interactions, which in turn depend on species body masses as the key traits. The system evolves due to the migration of species to neighboring patches, the addition of new species as modifications of existing species, and local extinction events. The structure of each local food web thus emerges in a self-organized manner as the highly non-trivial outcome of the relative time scales of these processes. Our model generates a large variety of complex, multi-trophic networks and therefore serves as a powerful tool to investigate ecosystems on long temporal and large spatial scales. We find that the observed lifetime distributions and species-area relations resemble power laws over appropriately chosen parameter ranges and thus agree qualitatively with empirical findings. Moreover, we observe strong finite-size effects, and a dependence of the relationships on the trophic level of the species. By comparing our results to simple neutral models found in the literature, we identify the features that are responsible for the values of the exponents.Comment: Theor Ecol (2019

    Heralded qubit amplifiers for practical device-independent quantum key distribution

    Full text link
    Device-independent quantum key distribution does not need a precise quantum mechanical model of employed devices to guarantee security. Despite of its beauty, it is still a very challenging experimental task. We compare a recent proposal by Gisin et al. [Phys. Rev. Lett. 105, 070501 (2010)] to close the detection loophole problem with that of a simpler quantum relay based on entanglement swapping with linear optics. Our full-mode analysis for both schemes confirms that, in contrast to recent beliefs, the second scheme can indeed provide a positive key rate which is even considerably higher than that of the first alternative. The resulting key rates and required detection efficiencies of approx. 95% for both schemes, however, strongly depend on the underlying security proof.Comment: 5 pages, 3 figure

    Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case - A simple proof for finite extension

    Full text link
    We consider a self-gravitating collisionless gas as described by the Vlasov-Poisson or Einstein-Vlasov system or a self-gravitating fluid ball as described by the Euler-Poisson or Einstein-Euler system. We give a simple proof for the finite extension of spherically symmetric equilibria, which covers all these models simultaneously. In the Vlasov case the equilibria are characterized by a local growth condition on the microscopic equation of state, i.e., on the dependence of the particle distribution on the particle energy, at the cut-off energy E_0, and in the Euler case by the corresponding growth condition on the equation of state p=P(\rho) at \rho=0. These purely local conditions are slight generalizations to known such conditions.Comment: 20 page

    Interaction-induced corrections to conductance and thermopower in quantum wires

    Full text link
    We study transport properties of weakly interacting spinless electrons in one-dimensional single channel quantum wires. The effects of interaction manifest as three-particle collisions due to the severe constraints imposed by the conservation laws on the two-body processes. We focus on short wires where the effects of equilibration on the distribution function can be neglected and collision integral can be treated in perturbation theory. We find that interaction-induced corrections to conductance and thermopower rely on the scattering processes that change number of right- and left-moving electrons. The latter requires transition at the bottom of the band which is exponentially suppressed at low temperatures. Our theory is based on the scattering approach that is beyond the Luttinger-liquid limit. We emphasize the crucial role of the exchange terms in the three-particle scattering amplitude that was not discussed in the previous studies.Comment: 4 pages, 2 figure
    • …
    corecore