2,886 research outputs found

    Breathing dissipative solitons in optical microresonators

    Full text link
    Dissipative solitons are self-localized structures resulting from a double balance between dispersion and nonlinearity as well as dissipation and a driving force. They occur in a wide variety of fields ranging from optics, hydrodynamics to chemistry and biology. Recently, significant interest has focused on their temporal realization in driven optical microresonators, known as dissipative Kerr solitons. They provide access to coherent, chip-scale optical frequency combs, which have already been employed in optical metrology, data communication and spectroscopy. Such Kerr resonator systems can exhibit numerous localized intracavity patterns and provide rich insights into nonlinear dynamics. A particular class of solutions consists of breathing dissipative solitons, representing pulses with oscillating amplitude and duration, for which no comprehensive understanding has been presented to date. Here, we observe and study single and multiple breathing dissipative solitons in two different microresonator platforms: crystalline MgF2\mathrm{MgF_2} resonator and Si3N4\mathrm{Si_3N_4} integrated microring. We report a deterministic route to access the breathing state, which allowed for a detailed exploration of the breathing dynamics. In particular, we establish the link between the breathing frequency and two system control parameters - effective pump laser detuning and pump power. Using a fast detection, we present a direct observation of the spatiotemporal dynamics of individual solitons, revealing irregular oscillations and switching. An understanding of breathing solitons is not only of fundamental interest concerning nonlinear systems close to critical transition, but also relevant for applications to prevent breather-induced instabilities in soliton-based frequency combs.Comment: 10 pages, 4 figure

    Analogue models of classical and semiclassical gravity

    Get PDF
    Formal analogies between gravitational and acoustic or optical phenomena have been a subject of study for over a century, leading to interesting scenarios for testing kinematic aspects of general relativity in terrestrial laboratories. Here, some aspects about analog models of gravity obtained from the description of these two different kind of systems are analysed. First, light propagation in linear magnetoeletric media is examined. In particular, it is shown that this effect produces mixed time-space terms in the effective metric that depend only on the antisymmetric part of the generally non-symmetric magnetoelectric coefficient. Furthermore, the dispersion relation related to the linear effect motivates the analysis of an idealised exact model presenting an analog event horizon. Then, a short discussion comparing different ways of constructing analog models is provided. Subsequently, motivated by the results obtained in the optical context, we make a bibliographic review about those analog models obtained from moving media, establishing an equivalence between the propagation of acoustic perturbations in such a background and the propagation of free scalar fields near a Schwarschild black hole. This last aspect drives us to analyse the particle production in this scenario, a result that was first addressed by Stephen Hawking [1, 2], which yields to the the description of the so called Hawking radiation. When treating a non-stationary spacetime, particularly those presenting a gravitational collapse, we can extend the description of quantum fields to curved spacetimes by splitting the metric into two asymptotically stationary regions, with that we show that the presence of the horizon is fundamental for the creation of particles. Finally, it is also shown that the thermal distribution of this particle emission is identical to the Planck distribution for bosons, and because of that the Hawking temperature appears to be very small when we consider astrophysical scenarios

    Detuning-dependent Properties and Dispersion-induced Instabilities of Temporal Dissipative Kerr Solitons in Optical Microresonators

    Full text link
    Temporal-dissipative Kerr solitons are self-localized light pulses sustained in driven nonlinear optical resonators. Their realization in microresonators has enabled compact sources of coherent optical frequency combs as well as the study of dissipative solitons. A key parameter of their dynamics is the effective-detuning of the pump laser to the thermally- and Kerr-shifted cavity resonance. Together with the free spectral range and dispersion, it governs the soliton-pulse duration, as predicted by an approximate analytical solution of the Lugiato-Lefever equation. Yet, a precise experimental verification of this relation was lacking so far. Here, by measuring and controlling the effective-detuning, we establish a new way of stabilizing solitons in microresonators and demonstrate that the measured relation linking soliton width and detuning deviates by less than 1 % from the approximate expression, validating its excellent predictive power. Furthermore, a detuning-dependent enhancement of specific comb lines is revealed, due to linear couplings between mode-families. They cause deviations from the predicted comb power evolution, and induce a detuning-dependent soliton recoil that modifies the pulse repetition-rate, explaining its unexpected dependence on laser-detuning. Finally, we observe that detuning-dependent mode-crossings can destabilize the soliton, leading to an unpredicted soliton breathing regime (oscillations of the pulse) that occurs in a normally-stable regime. Our results test the approximate analytical solutions with an unprecedented degree of accuracy and provide new insights into dissipative-soliton dynamics.Comment: Updated funding acknowledgement

    Cesium‐vapor‐based delay of single photons emitted by deterministically fabricated quantum dot microlenses

    Get PDF
    Quantum light sources are key building blocks of photonic quantum technologies. For many applications, it is of interest to control the arrival time of single photons emitted by such quantum devices, or even to store single photons in quantum memories. In situ electron beam lithography is applied to realize InGaAs quantum dot (QD)‐based single‐photon sources, which are interfaced with cesium (Cs) vapor to control the time delay of emitted photons. Via numerical simulations of the light–matter interaction in realistic QD‐Cs‐vapor configurations, the influence of the vapor temperature and spectral QD‐atom detuning is explored to maximize the achievable delay in experimental studies. As a result, this hybrid quantum system allows to trigger the emission of single photons with a linewidth as low as 1.54 GHz even under non‐resonant optical excitation and to delay the emission pulses by up to (15.71 ± 0.01) ns for an effective cell length of 150 mm. This work can pave the way for scalable quantum systems relying on a well‐controlled delay of single photons on a time scale of up to a few tens of nanoseconds.BMBF, 03V0630TIB, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle fĂŒr die QuanteninformationstechnologieBMBF, 13N14876, Quantenkommunikations-Systeme auf Basis von Einzelphotonenquellen (QuSecure)DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, BauelementeTU Berlin, Open-Access-Mittel - 201

    Experienced Well-Being and Labor Market Status: The Role of Pleasure and Meaning

    Get PDF
    This paper examines the experienced well-being of employed and unemployed workers. We use the survey-adapted Day Reconstruction Method of the Innovation Sample of the German Socio-Economic Panel Study to analyze the role of the employment status for well-being, incorporating time use. We use the novel P-index to summarize the average share of pleasurable minutes on a day and show that in contrast to evaluative life satisfaction the unemployed experiences more pleasurable minutes due to the absence of working episodes. Hence, we examine working episodes in depth. While working is among the activities with the highest propensities for an unpleasant experience, it is also among the most meaningful activities. We show that meaning is a central non-monetary determinant for pleasure at work and find that pleasure during work and job satisfaction have a comparable association with meaning

    Privacy at Risk: Exploiting Similarities in Health Data for Identity Inference

    Full text link
    Smartwatches enable the efficient collection of health data that can be used for research and comprehensive analysis to improve the health of individuals. In addition to the analysis capabilities, ensuring privacy when handling health data is a critical concern as the collection and analysis of such data become pervasive. Since health data contains sensitive information, it should be handled with responsibility and is therefore often treated anonymously. However, also the data itself can be exploited to reveal information and break anonymity. We propose a novel similarity-based re-identification attack on time-series health data and thereby unveil a significant vulnerability. Despite privacy measures that remove identifying information, our attack demonstrates that a brief amount of various sensor data from a target individual is adequate to possibly identify them within a database of other samples, solely based on sensor-level similarities. In our example scenario, where data owners leverage health data from smartwatches, findings show that we are able to correctly link the target data in two out of three cases. User privacy is thus already inherently threatened by the data itself and even when removing personal information

    Nanophotonic soliton-based microwave synthesizers

    Full text link
    Microwave photonic technologies, which upshift the carrier into the optical domain to facilitate the generation and processing of ultrawide-band electronic signals at vastly reduced fractional bandwidths, have the potential to achieve superior performance compared to conventional electronics for targeted functions. For microwave photonic applications such as filters, coherent radars, subnoise detection, optical communications and low-noise microwave generation, frequency combs are key building blocks. By virtue of soliton microcombs, frequency combs can now be built using CMOS compatible photonic integrated circuits, operated with low power and noise, and have already been employed in system-level demonstrations. Yet, currently developed photonic integrated microcombs all operate with repetition rates significantly beyond those that conventional electronics can detect and process, compounding their use in microwave photonics. Here we demonstrate integrated soliton microcombs operating in two widely employed microwave bands, X- and K-band. These devices can produce more than 300 comb lines within the 3-dB-bandwidth, and generate microwave signals featuring phase noise levels below 105 dBc/Hz (140 dBc/Hz) at 10 kHz (1 MHz) offset frequency, comparable to modern electronic microwave synthesizers. In addition, the soliton pulse stream can be injection-locked to a microwave signal, enabling actuator-free repetition rate stabilization, tuning and microwave spectral purification, at power levels compatible with silicon-based lasers (<150 mW). Our results establish photonic integrated soliton microcombs as viable integrated low-noise microwave synthesizers. Further, the low repetition rates are critical for future dense WDM channel generation schemes, and can significantly reduce the system complexity of photonic integrated frequency synthesizers and atomic clocks
    • 

    corecore