65 research outputs found

    Cluster-Based Autoencoders for Volumetric Point Clouds

    Full text link
    Autoencoders allow to reconstruct a given input from a small set of parameters. However, the input size is often limited due to computational costs. We therefore propose a clustering and reassembling method for volumetric point clouds, in order to allow high resolution data as input. We furthermore present an autoencoder based on the well-known FoldingNet for volumetric point clouds and discuss how our approach can be utilized for blending between high resolution point clouds as well as for transferring a volumetric design/style onto a pointcloud while maintaining its shape

    A Voting Approach for Explainable Classification with Rule Learning

    Full text link
    State-of-the-art results in typical classification tasks are mostly achieved by unexplainable machine learning methods, like deep neural networks, for instance. Contrarily, in this paper, we investigate the application of rule learning methods in such a context. Thus, classifications become based on comprehensible (first-order) rules, explaining the predictions made. In general, however, rule-based classifications are less accurate than state-of-the-art results (often significantly). As main contribution, we introduce a voting approach combining both worlds, aiming to achieve comparable results as (unexplainable) state-of-the-art methods, while still providing explanations in the form of deterministic rules. Considering a variety of benchmark data sets including a use case of significant interest to insurance industries, we prove that our approach not only clearly outperforms ordinary rule learning methods, but also yields results on a par with state-of-the-art outcomes.Comment: 34 pages, 10 figure

    Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress.

    Get PDF
    Hillion M, Bernhardt J, Busche T, et al. Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress. Sci Rep. 2017;7(1): 1195.Mycothiol (MSH) is the major low molecular weight (LMW) thiol in Actinomycetes. Here, we used shotgun proteomics, OxICAT and RNA-seq transcriptomics to analyse protein S-mycothiolation, reversible thiol-oxidations and their impact on gene expression in Mycobacterium smegmatis under hypochlorite stress. In total, 58 S-mycothiolated proteins were identified under NaOCl stress that are involved in energy metabolism, fatty acid and mycolic acid biosynthesis, protein translation, redox regulation and detoxification. Protein S-mycothiolation was accompanied by MSH depletion in the thiol-metabolome. Quantification of the redox state of 1098 Cys residues using OxICAT revealed that 381 Cys residues (33.6%) showed >10% increased oxidations under NaOCl stress, which overlapped with 40 S-mycothiolated Cys-peptides. The absence of MSH resulted in a higher basal oxidation level of 338 Cys residues (41.1%). The RseA and RshA anti-sigma factors and the Zur and NrdR repressors were identified as NaOCl-sensitive proteins and their oxidation resulted in an up-regulation of the SigH, SigE, Zur and NrdR regulons in the RNA-seq transcriptome. In conclusion, we show here that NaOCl stress causes widespread thiol-oxidation including protein S-mycothiolation resulting in induction of antioxidant defense mechanisms in M. smegmatis. Our results further reveal that MSH is important to maintain the reduced state of protein thiols

    Antithrombin deficiency is associated with mortality and impaired organ function in septic pediatric patients: a retrospective study

    Get PDF
    Background Sepsis remains a major problem in intensive care medicine. It is often accompanied by coagulopathies, leading to thrombotic occlusion of small vessels with subsequent organ damage and even fatal multi-organ failure. Prediction of the clinical course and outcome—especially in the heterogeneous group of pediatric patients—is difficult. Antithrombin, as an endogenous anticoagulant enzyme with anti-inflammatory properties, plays a central role in controling coagulation and infections. We investigated the relationship between antithrombin levels and organ failure as well as mortality in pediatric patients with sepsis. Methods Data from 164 patients under the age of 18, diagnosed with sepsis, were retrospectively reviewed. Antithrombin levels were recorded three days before to three days after peak C-reactive protein to correlate antithrombin levels with inflammatory activity. Using the concept of developmental haemostasis, patients were divided into groups <1 yr and ≥1 yr of age. Results In both age groups, survivors had significantly higher levels of antithrombin than did deceased patients. An optimal threshold level for antithrombin was calculated by ROC analysis for survival: 41.5% (<1 yr) and 67.5% (≥1 yr). The mortality rate above this level was 3.3% (<1 yr) and 9.5% (≥1 yr), and below this level 41.7% (<1 yr) and 32.2% (≥1 yr); OR 18.8 (1.74 to 1005.02), p = 0.0047, and OR 4.46 (1.54 to 14.89), p = 0.003. In children <1 yr with antithrombin levels <41.5% the rate of respiratory failure (66.7%) was significantly higher than in patients with antithrombin levels above this threshold level (23.3%), OR 6.23 (1.23 to 37.81), p = 0.0132. In children ≥1 yr, both liver failure (20.3% vs 1.6%, OR 15.55 (2.16 to 685.01), p = 0.0008) and a dysfunctional intestinal tract (16.9% vs 4.8%, OR 4.04 (0.97 to 24.08), p = 0.0395) occurred more frequently above the antithrombin threshold level of 67.5%. Conclusion In pediatric septic patients, significantly increased mortality and levels of organ failure were found below an age-dependent antithrombin threshold level. Antithrombin could be useful as a prognostic marker for survival and occurrence of organ failure in pediatric sepsis

    Peptidomimetic antibiotics disrupt the lipopolysaccharide transport bridge of drug-resistant Enterobacteriaceae

    Full text link
    The rise of antimicrobial resistance poses a substantial threat to our health system, and, hence, development of drugs against novel targets is urgently needed. The natural peptide thanatin kills Gram-negative bacteria by targeting proteins of the lipopolysaccharide transport (Lpt) machinery. Using the thanatin scaffold together with phenotypic medicinal chemistry, structural data, and a target-focused approach, we developed antimicrobial peptides with drug-like properties. They exhibit potent activity against Enterobacteriaceae both in vitro and in vivo while eliciting low frequencies of resistance. We show that the peptides bind LptA of both wild-type and thanatin-resistant Escherichia coli and Klebsiella pneumoniae strains with low-nanomolar affinities. Mode of action studies revealed that the antimicrobial activity involves the specific disruption of the Lpt periplasmic protein bridge

    Dynamic Myocardial Perfusion CT for the Detection of Hemodynamically Significant Coronary Artery Disease

    Get PDF
    OBJECTIVES In this international, multicenter study, using third-generation dual-source computed tomography (CT), we investigated the diagnostic performance of dynamic stress CT myocardial perfusion imaging (CT-MPI) in addition to coronary CT angiography (CTA) compared to invasive coronary angiography (ICA) and invasive fractional flow reserve (FFR). BACKGROUND CT-MPI combined with coronary CTA integrates coronary artery anatomy with inducible myocardial ischemia, showing promising results for the diagnosis of hemodynamically significant coronary artery disease in single-center studies. METHODS At 9 centers in Europe, Japan, and the United States, 132 patients scheduled for ICA were enrolled; 114 patients successfully completed coronary CTA, adenosine-stress dynamic CT-MPI, and ICA. Invasive FFR was performed in vessels with 25% to 90% stenosis. Data were analyzed by independent core laboratories. For the primary analysis, for each coronary artery the presence of hemodynamically significant obstruction was interpreted by coronary CTA with CT-MPI compared to coronary CTA alone, using an FFR of ≤0.80 and angiographic severity as reference. Territorial absolute myocardial blood flow (MBF) and relative MBF were compared using C-statistics. RESULTS ICA and FFR identified hemodynamically significant stenoses in 74 of 289 coronary vessels (26%). Coronary CTA with ≥50% stenosis demonstrated a per-vessel sensitivity, specificity, and accuracy for the detection of hemodynamically significant stenosis of 96% (95% CI: 91-100), 72% (95% CI: 66-78), and 78% (95% CI: 73-83), respectively. Coronary CTA with CT-MPI showed a lower sensitivity (84%; 95% CI: 75-92) but higher specificity (89%; 95% CI: 85-93) and accuracy (88%; 95% CI: 84-92). The areas under the receiver-operating characteristic curve of absolute MBF and relative MBF were 0.79 (95% CI: 0.71-0.86) and 0.82 (95% CI: 0.74-0.88), respectively. The median dose-length product of CT-MPI and coronary CTA were 313 mGy·cm and 138 mGy·cm, respectively. CONCLUSIONS Dynamic CT-MPI offers incremental diagnostic value over coronary CTA alone for the identification of hemodynamically significant coronary artery disease. Generalized results from this multicenter study encourage broader consideration of dynamic CT-MPI in clinical practice. (Dynamic Stress Perfusion CT for Detection of Inducible Myocardial Ischemia [SPECIFIC]; NCT02810795)

    The Warburg Effect Suppresses Oxidative Stress Induced Apoptosis in a Yeast Model for Cancer

    Get PDF
    BACKGROUND: Otto Warburg observed that cancer cells are often characterized by intense glycolysis in the presence of oxygen and a concomitant decrease in mitochondrial respiration. Research has mainly focused on a possible connection between increased glycolysis and tumor development whereas decreased respiration has largely been left unattended. Therefore, a causal relation between decreased respiration and tumorigenesis has not been demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose, colonies of Saccharomyces cerevisiae, which is suitable for manipulation of mitochondrial respiration and shows mitochondria-mediated cell death, were used as a model. Repression of respiration as well as ROS-scavenging via glutathione inhibited apoptosis and conferred a survival advantage during seeding and early development of this fast proliferating solid cell population. In contrast, enhancement of respiration triggered cell death. CONCLUSION/SIGNIFICANCE: Thus, the Warburg effect might directly contribute to the initiation of cancer formation--not only by enhanced glycolysis--but also via decreased respiration in the presence of oxygen, which suppresses apoptosis

    Transapical mitral valve implantation for treatment of symptomatic mitral valve disease: a real-world multicentre experience.

    Get PDF
    AIMS Transcatheter mitral valve implantation (TMVI) is a new treatment option for patients with symptomatic mitral valve (MV) disease. Real-world data have not yet been reported. This study aimed to assess procedural and 30-day outcomes of TMVI in a real-world patient cohort. METHOD AND RESULTS All consecutive patients undergoing implantation of a transapically delivered self-expanding valve at 26 European centres from January 2020 to April 2021 were included in this retrospective observational registry. Among 108 surgical high-risk patients included (43% female, mean age 75 ± 7 years, mean STS-PROM 7.2 ± 5.3%), 25% was treated for an off-label indication (e.g. previous MV intervention or surgery, mitral stenosis, mitral annular calcification). Patients were highly symptomatic (New York Heart Association [NYHA] functional class III/IV in 86%) and mitral regurgitation (MR) was graded 3+/4+ in 95% (38% primary, 37% secondary, and 25% mixed aetiology). Technical success rate was 96%, and MR reduction to ≤1+ was achieved in all patients with successful implantation. There were two procedural deaths and 30-day all-cause mortality was 12%. At early clinical follow-up, MR reduction was sustained and there were significant reductions of pulmonary pressure (systolic pulmonary artery pressure 52 vs. 42 mmHg, p < 0.001), and tricuspid regurgitation severity (p = 0.013). Heart failure symptoms improved significantly (73% in NYHA class I/II, p < 0.001). Procedural success rate according to MVARC criteria was 80% and was not different in patients treated for an off-label indication (74% vs. 81% for off- vs. on-label, p = 0.41). CONCLUSION In a real-world patient population, TMVI has a high technical and procedural success rate with efficient and durable MR reduction and symptomatic improvement
    • …
    corecore