92 research outputs found

    Zero-Crossing Statistics for Non-Markovian Time Series

    Full text link
    In applications spaning from image analysis and speech recognition, to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging. And therefore, few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero-crossings in a fixed time interval of a zero-mean Gaussian stationary processes. In this study we use the so-called Independent Interval Approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agrees well with simulations for the non-Markovian autoregressive model

    Many-body effects in tracer particle diffusion with applications for single-protein dynamics on DNA

    Full text link
    30% of the DNA in E. coli bacteria is covered by proteins. Such high degree of crowding affect the dynamics of generic biological processes (e.g. gene regulation, DNA repair, protein diffusion etc.) in ways that are not yet fully understood. In this paper, we theoretically address the diffusion constant of a tracer particle in a one dimensional system surrounded by impenetrable crowder particles. While the tracer particle always stays on the lattice, crowder particles may unbind to a surrounding bulk and rebind at another or the same location. In this scenario we determine how the long time diffusion constant D{\cal D} (after many unbinding events) depends on (i) the unbinding rate of crowder particles koffk_{\rm off}, and (ii) crowder particle line density ρ\rho, from simulations (Gillespie algorithm) and analytical calculations. For small koffk_{\rm off}, we find Dkoff/ρ2{\cal D}\sim k_{\rm off}/\rho^2 when crowder particles are immobile on the line, and DDkoff/ρ{\cal D}\sim \sqrt{D k_{\rm off}}/\rho when they are diffusing; DD is the free particle diffusion constant. For large koffk_{\rm off}, we find agreement with mean-field results which do not depend on koffk_{\rm off}. From literature values of koffk_{\rm off} and DD, we show that the small koffk_{\rm off}-limit is relevant for in vivo protein diffusion on a crowded DNA. Our results applies to single-molecule tracking experiments.Comment: 10 pages, 8 figure

    Blinking statistics of a molecular beacon triggered by end-denaturation of DNA

    Full text link
    We use a master equation approach based on the Poland-Scheraga free energy for DNA denaturation to investigate the (un)zipping dynamics of a denaturation wedge in a stretch of DNA, that is clamped at one end. In particular, we quantify the blinking dynamics of a fluorophore-quencher pair mounted within the denaturation wedge. We also study the behavioural changes in the presence of proteins, that selectively bind to single-stranded DNA. We show that such a setup could be well-suited as an easy-to-implement nanodevice for sensing environmental conditions in small volumes.Comment: 14 pages, 5 figures, LaTeX, IOP style. Accepted to J Phys Cond Mat special issue on diffusio

    Single-File diffusion in a Box

    Full text link
    We study diffusion of (fluorescently) tagged hard-core interacting particles of finite size in a finite one-dimensional system. We find an exact analytical expression for the tagged particle probability density using a coordinate Bethe-ansatz, from which the mean square displacement is calculated. The analysis show the existence of three regimes of drastically different behavior for short, intermediate and large times. The results show excellent agreement with stochastic simulations (Gillespie algorithm). The findings of the Letter holds promise for the development of novel bio-nano sensors.Comment: 5 pages, 4 figure

    Tracer particle diffusion in a system with hardcore interacting particles

    Full text link
    In this study, inspired by the work of K. Nakazato and K. Kitahara [Prog. Theor. Phys. 64, 2261 (1980)], we consider the theoretical problem of tracer particle diffusion in an environment of diffusing hardcore interacting crowder particles. The tracer particle has a different diffusion constant from the crowder particles. Based on a transformation of the generating function, we provide an exact formal expansion for the tracer particle probability density, valid for any lattice in the thermodynamic limit. By applying this formal solution to dynamics on regular Bravais lattices we provide a closed form approximation for the tracer particle diffusion constant which extends the Nakazato and Kitahara results to include also b.c.c. and f.c.c. lattices. Finally, we compare our analytical results to simulations in two and three dimensions.Comment: 28 pages with appendix, 5 figure. To appear in JSTA

    Single-file diffusion with non-thermal initial conditions

    Full text link
    Single-file diffusion is a theoretically challenging many-body problem where the calculation of even the simplest observables, e.g. mean square displacement, for a tracer particle requires a heavy mathematical machinery. There is therefore a need for simple approaches which predict qualitatively correct behaviours. Here we put forward one such method which we use to investigate the influence of non-thermal initial conditions on the dynamics of a tracer particle. With our new approach we reproduce, up to scaling, several known asymptotic results for the tracer particle mean square displacement.Comment: 4 pages, 1 figur

    Dissimilar bouncy walkers

    Full text link
    We consider the dynamics of a one-dimensional system consisting of dissimilar hardcore interacting (bouncy) random walkers. The walkers' (diffusing particles') friction constants xi_n, where n labels different bouncy walkers, are drawn from a distribution rho(xi_n). We provide an approximate analytic solution to this recent single-file problem by combining harmonization and effective medium techniques. Two classes of systems are identified: when rho(xi_n) is heavy-tailed, rho(xi_n)=A xi_n^(-1-\alpha) (0<alpha<1) for large xi_n, we identify a new universality class in which density relaxations, characterized by the dynamic structure factor S(Q,t), follows a Mittag-Leffler relaxation, and the the mean square displacement of a tracer particle (MSD) grows as t^delta with time t, where delta=alpha/(1+\alpha). If instead rho is light-tailedsuch that the mean friction constant exist, S(Q,t) decays exponentially and the MSD scales as t^(1/2). We also derive tracer particle force response relations. All results are corroborated by simulations and explained in a simplified model.Comment: 11 pages, to appear in Journal of Chemical Physic

    Breathing dynamics in heteropolymer DNA

    Get PDF
    While the statistical mechanical description of DNA has a long tradition, renewed interest in DNA melting from a physics perspective is nourished by measurements of the fluctuation dynamics of local denaturation bubbles by single molecule spectroscopy. The dynamical opening of DNA bubbles (DNA breathing) is supposedly crucial for biological functioning during, for instance, transcription initiation and DNA's interaction with selectively single-stranded DNA binding proteins. Motivated by this, we consider the bubble breathing dynamics in a heteropolymer DNA based on a (2+1)-variable master equation and complementary stochastic Gillespie simulations, providing the bubble size and the position of the bubble along the sequence as a function of time. We utilize new experimental data that independently obtain stacking and hydrogen bonding contributions to DNA stability. We calculate the spectrum of relaxation times and the experimentally measurable autocorrelation function of a fluorophore-quencher tagged base-pair, and demonstrate good agreement with fluorescence correlation experiments. A significant dependence of opening probability and waiting time between bubble events on the local DNA sequence is revealed and quantified for a promoter sequence of the T7 phage. The strong dependence on sequence, temperature and salt concentration for the breathing dynamics of DNA found here points at a good potential for nanosensing applications by utilizing short fluorophore-quencher dressed DNA constructs.Comment: 11 pages, 8 figure
    corecore