4 research outputs found

    Detection of RAF fusion transcripts in FFPE samples of Medullablastoma and Ependymom in Iraqi children with RT-RQPCR assays

    Get PDF
    Medulloblastomas and ependymomas are the most common malignant brain tumors in children. However genetic abnormalities associated with their development and prognosis remain unclear. Recently two gene fusions, KIAA1549–BRAF and SRGAP3–RAF1 have been detected in a number of brain tumours. We report here our development and validation of RT-RQPCR assays to detect various isoforms of these two fusion genes in formalin fixed paraffin embedded (FFPE) tissues of medulloblastoma and ependymoma. We examined these fusion genes in 44 paediatric brain tumours, 33 medulloblastomas and 11 ependymomas. We detected both fusion transcripts in 8/33, 5/33 SRGAP3 ex10/RAF1 ex10, and 3/33 KIAA1549 ex16/BRAF ex9, meduloblastomas but none in the 11 ependymomas examined. This investigation provided evidence to the value of RT-RQPCR assays for the detection of these fusion genes in large-scale studies on FFPE tissues. The study also reports the first detection of RAF fusion genes in meduloblstomas

    Humoral detection of leukaemia-associated antigens in presentation acute myeloid leukaemia

    No full text
    The serological analysis of recombinant cDNA expression libraries (SEREX) technique was used to immunoscreen a testes cDNA expression library with sera from newly diagnosed acute myeloid leukaemia (AML) patients. We used a testis cDNA library to aid our identification of cancer-testis (CT) antigens. We identified 44 antigens which we further immunoscreened with sera from AML, chronic myeloid leukaemia (CML), and normal donors. Eight antigens were solely recognised by patient sera including the recently described CT antigen, PASD1, and the cancer-related SSX2 interacting protein, SSX2IP. RT-PCR analysis indicated that we had identified three antigens which were expressed in patient bone marrow (BM) and peripheral blood (PB) but not in normal donor samples (PASD1, SSX2IP, and GRINL1A). Real-time PCR (RQ-PCR) confirmed the restricted expression of PASD1 in normal donor organs. Antigen presentation assays using monocyte-derived dendritic cells (mo-DCs) showed that PASD1 could stimulate autologous T-cell responses, suggesting that PASD1 could be a promising target for future immunotherapy clinical trial
    corecore