26 research outputs found

    Diversity in anopheline larval habitats and adult composition during the dry and wet seasons in Ouagadougou (Burkina Faso)

    Get PDF
    Background: Several cases of malaria are frequently recorded during the dry period in Ouagadougou town (Burkina Faso). This has led to the design of a series of studies focusing on both parasitological and entomological investigations intended to provide relevant health data on the risk of local malaria transmission according to the way of urbanisation. Methods: A cross-sectional entomological survey was carried out in various districts of Ouagadougou in April and October 2006. Adult malaria vectors were collected using CDC traps and indoor insecticide spraying performed in four houses during four consecutive days/nights. Intensive larval sampling was also done in available water ponds throughout the study sites. Results: In April, the anopheline breeding sites consisted only of semi-permanent or permanent swamps located mainly in the two peripheral districts. Despite the presence of anopheline larvae in these breeding sites, less than five Anopheles gambiae s.l. adults were caught by CDC traps and indoor insecticide spraying. In October, additionally to the permanent breeding sites reported in April, some rainfall swamps were also found positive to anophelines. The number of adults' mosquitoes was higher than that collected in April (2 vs 159 in October). Out of 115 larvae of An. gambiae s.l. analysed by PCR in April, 59.1% (68/115) were identified as Anopheles arabiensis, 39.1% (45/115) as An. gambiae M while the S form represented less than 2%. Overall 120 larvae and 86 females were identified by PCR in October as An. gambiae M form (51%) and An. arabiensis (42.2%). The S form represented only 6.8%. The global sporozoite rate recorded was high (6.8%) and did not differ between the districts except in the central district where no positive mosquito was detected. Conclusion: Although only few adults' mosquitoes were actively caught during the driest month, malaria vectors persisted all year long that increases the risk of urban malaria transmission. The distribution of breeding sites and especially the occurrence of malaria vectors were more abundant in the periphery, which is more like that of a rural settlement. The evolution of malaria prevalence and the factors sustaining the risk of transmission in Ouagadougou as well in many African cities during the dry season are discussed

    Assessing the variability in experimental hut trials evaluating insecticide-treated nets against malaria vectors.

    Get PDF
    Experimental hut trials (EHTs) are used to evaluate indoor vector control interventions against malaria vectors in a controlled setting. The level of variability present in the assay will influence whether a given study is well powered to answer the research question being considered. We utilised disaggregated data from 15 previous EHTs to gain insight into the behaviour typically observed. Using simulations from generalised linear mixed models to obtain power estimates for EHTs, we show how factors such as the number of mosquitoes entering the huts each night and the magnitude of included random effects can influence study power. A wide variation in behaviour is observed in both the mean number of mosquitoes collected per hut per night (ranging from 1.6 to 32.5) and overdispersion in mosquito mortality. This variability in mortality is substantially greater than would be expected by chance and should be included in all statistical analyses to prevent false precision of results. We utilise both superiority and non-inferiority trials to illustrate our methodology, using mosquito mortality as the outcome of interest. The framework allows the measurement error of the assay to be reliably assessed and enables the identification of outlier results which could warrant further investigation. EHTs are increasingly playing an important role in the evaluation and regulation of indoor vector control interventions so it is important to ensure that these studies are adequately powered. [Abstract copyright: © 2023 The Authors.

    Barrier bednets target malaria vectors and expand the range of usable insecticides

    Get PDF
    Transmission of Plasmodium falciparum malaria parasites occurs when nocturnal Anopheles mosquito vectors feed on human blood. In Africa, where malaria burden is highest, bednets treated with pyrethroid insecticide were highly effective in preventing mosquito bites and reducing transmission, and essential to achieving unprecedented reductions in malaria until 2015 (ref. ). Since then, progress has stalled , and with insecticidal bednets losing efficacy against pyrethroid-resistant Anopheles vectors , methods that restore performance are urgently needed to eliminate any risk of malaria returning to the levels seen before their widespread use throughout sub-Saharan Africa . Here, we show that the primary malaria vector Anopheles gambiae is targeted and killed by small insecticidal net barriers positioned above a standard bednet in a spatial region of high mosquito activity but zero contact with sleepers, opening the way for deploying many more insecticides on bednets than is currently possible. Tested against wild pyrethroid-resistant A. gambiae in Burkina Faso, pyrethroid bednets with organophosphate barriers achieved significantly higher killing rates than bednets alone. Treated barriers on untreated bednets were equally effective, without significant loss of personal protection. Mathematical modelling of transmission dynamics predicted reductions in clinical malaria incidence with barrier bednets that matched those of 'next-generation' nets recommended by the World Health Organization against resistant vectors. Mathematical models of mosquito-barrier interactions identified alternative barrier designs to increase performance. Barrier bednets that overcome insecticide resistance are feasible using existing insecticides and production technology, and early implementation of affordable vector control tools is a realistic prospect

    Building the capacity of West African countries in Aedes surveillance: inaugural meeting of the West African Aedes Surveillance Network (WAASuN)

    Get PDF
    Arboviral diseases such as dengue, Zika and chikungunya transmitted by Aedes mosquitoes have been reported in 34 African countries. Available data indicate that in recent years there have been dengue and chikungunya outbreaks in the West Africa subregion, in countries including Côte d’Ivoire, Burkina Faso, Gabon, Senegal, and Benin. These viral diseases are causing an increased public health burden, which impedes poverty reduction and sustainable development. Aedes surveillance and control capacity, which are key to reducing the prevalence of arboviral infections, need to be strengthened in West Africa, to provide information essential for the formulation of effective vector control strategies and the prediction of arboviral disease outbreaks. In line with these objectives, the West African Aedes Surveillance Network (WAASuN) was created in 2017 at a meeting held in Sierra Leone comprising African scientists working on Aedes mosquitoes. This manuscript describes the proceedings and discusses key highlights of the meeting

    Multiple insecticide resistance and first evidence of V410L kdr mutation in Aedes (Stegomyia) aegypti (Linnaeus) from Burkina Faso

    Get PDF
    The response to recent dengue outbreaks in Burkina Faso was insecticide‐based, despite poor knowledge of the vector population's susceptibility to the insecticides used. Here, we report on the susceptibility to the main insecticide classes and identify important underlying mechanisms in Aedes aegypti populations in Ouagadougou and Banfora, in 2019 and 2020. Wild Ae. aegypti were tested as adults in WHO bioassays and then screened in real time melting curve qPCR analyses to genotype the F1534C, V1016I, and V410L Aedes kdr mutations. Ae. aegypti showed moderate resistance to 0.1% bendiocarb (80–95% survival post‐exposure), 0.8% Malathion (60–100%), 0.21% pirimiphos‐methyl (75% – 97%), and high resistance to 0.03% deltamethrin (20–70%). PBO pre‐exposure partially restored pyrethroid susceptibility. Genotyping detected high frequency of 1534C allele (0.92) and moderate 1016I (0.1–0.32). The V410L mutation was detected in Burkina Faso for the first time (frequency 0.1–0.36). Mosquitoes surviving 4 h exposure to 0.03% deltamethrin had significantly higher frequencies of the F1534C mutation than dead mosquitoes (0.70 vs. 0.96, p < 0.0001) and mosquitoes surviving 2 ‐ 4 h exposure had a significantly reduced life span. Ae. aegypti from Burkina Faso are resistant to multiple insecticide classes with multiple mechanisms involved, demonstrating the essential role of insecticide resistance monitoring within national dengue control programmes

    Sympatric Populations of the Anopheles gambiae Complex in Southwest Burkina Faso Evolve Multiple Diverse Resistance Mechanisms in Response to Intense Selection Pressure with Pyrethroids

    Get PDF
    Pyrethroid resistance in the Anopheles vectors of malaria is driving an urgent search for new insecticides that can be used in proven vector control tools such as insecticide treated nets (ITNs). Screening for potential new insecticides requires access to stable colonies of the predominant vector species that contain the major pyrethroid resistance mechanisms circulating in wild populations. Southwest Burkina Faso is an apparent hotspot for the emergence of pyrethroid resistance in species of the Anopheles gambiae complex. We established stable colonies from larval collections across this region and characterised the resistance phenotype and underpinning genetic mechanisms. Three additional colonies were successfully established (1 An. coluzzii, 1 An. gambiae and 1 An. arabiensis) to add to the 2 An. coluzzii colonies already established from this region; all 5 strains are highly resistant to pyrethroids. Synergism assays found that piperonyl butoxide (PBO) exposure was unable to fully restore susceptibility although exposure to a commercial ITN containing PBO resulted in 100% mortality. All colonies contained resistant alleles of the voltage gated sodium channel but with differing proportions of alternative resistant haplotypes. RNAseq data confirmed the role of P450s, with CYP6P3 and CYP6Z2 elevated in all 5 strains, and identified many other resistance mechanisms, some found across strains, others unique to a particular species. These strains represent an important resource for insecticide discovery and provide further insights into the complex genetic changes driving pyrethroid resistance

    Effects of Age and Size on Anopheles gambiae s.s. Male Mosquito Mating Success

    Full text link
    Before the release of genetically-modiÞed or sterile male mosquitoes in an attempt to control local populations of malaria vectors, it is crucial to determine male traits involved in mating success. The effects of male size and age as determinants of male mating success in Anopheles gambiae s.s. were measured in the Þeld and under laboratory conditions in Burkina Faso. First, the body sizes (estimated by wing length) of mating, swarming, and indoor-resting male mosquitoes were compared over a 3-yr period (2006Ð2009) from July to October in Soumousso and Valle´e du Kou, two villages in western Burkina Faso. Second, the age structure of swarming and resting male mosquitoes were characterized based on the number of spermatocysts and the proportion of sperm in the reservoir of wild-caught male testis. Third, male age effects on the insemination rate of female An. gambiae were investigated in the laboratory. The mean size of males collected in copula was signiÞcantly larger than the mean for swarming males and indoor-resting males. The optimum male age for successful insemination of females was 4Ð8 d. These results suggest that male size is an important trait in determining male mating competitiveness in the Þeld. Although age was not found to be a signiÞcant factor in mating competitiveness, it was signiÞcantly correlated with swarming behaviors in the Þeld and insemination success in the laboratory.Theimplications of these results in terms of sexual selection in An. gambiae and vector control programs are further discussed. (Résumé d'auteur

    Comparison of allele frequencies of 1014F, 1014S and <i>ace-1<sup>R</sup></i> mutations within <i>Anopheles gambiae</i>, <i>An. coluzzii</i> and <i>An. arabiensis</i> populations from 15 sites dispersed across the 3 agro-ecological regions of Burkina Faso.

    No full text
    <p>Comparison of allele frequencies of 1014F, 1014S and <i>ace-1<sup>R</sup></i> mutations within <i>Anopheles gambiae</i>, <i>An. coluzzii</i> and <i>An. arabiensis</i> populations from 15 sites dispersed across the 3 agro-ecological regions of Burkina Faso.</p
    corecore