23 research outputs found

    The extraction of the new components from electrogastrogram (EGG), using both adaptive filtering and electrocardiographic (ECG) derived respiration signal

    Get PDF
    Electrogastrographic examination (EGG) is a noninvasive method for an investigation of a stomach slow wave propagation. The typical range of frequency for EGG signal is from 0.015 to 0.15 Hz or (0.015–0.3 Hz) and the signal usually is captured with sampling frequency not exceeding 4 Hz. In this paper a new approach of method for recording the EGG signals with high sampling frequency (200 Hz) is proposed. High sampling frequency allows collection of signal, which includes not only EGG component but also signal from other organs of the digestive system such as the duodenum, colon as well as signal connected with respiratory movements and finally electrocardiographic signal (ECG). The presented method allows improve the quality of analysis of EGG signals by better suppress respiratory disturbance and extract new components from high sampling electrogastrographic signals (HSEGG) obtained from abdomen surface. The source of the required new signal components can be inner organs such as the duodenum and colon. One of the main problems that appear during analysis the EGG signals and extracting signal components from inner organs is how to suppress the respiratory components. In this work an adaptive filtering method that requires a reference signal is proposed.Electrogastrographic examination (EGG) is a noninvasive method for an investigation of a stomach slow wave propagation. The typical range of frequency for EGG signal is from 0.015 to 0.15 Hz or (0.015–0.3 Hz) and the signal usually is captured with sampling frequency not exceeding 4 Hz. In this paper a new approach of method for recording the EGG signals with high sampling frequency (200 Hz) is proposed. High sampling frequency allows collection of signal, which includes not only EGG component but also signal from other organs of the digestive system such as the duodenum, colon as well as signal connected with respiratory movements and finally electrocardiographic signal (ECG). The presented method allows improve the quality of analysis of EGG signals by better suppress respiratory disturbance and extract new components from high sampling electrogastrographic signals (HSEGG) obtained from abdomen surface. The source of the required new signal components can be inner organs such as the duodenum and colon. One of the main problems that appear during analysis the EGG signals and extracting signal components from inner organs is how to suppress the respiratory components. In this work an adaptive filtering method that requires a reference signal is proposed

    Extreme Situation Experienced by Dental Students of the Medical University of Silesia Due to the SARS-CoV-2 Epidemic during the First Lockdown

    Get PDF
    The pandemic declared in many countries in 2020 due to COVID-19 led to the freezing of economies and the introduction of distance learning in both schools and universities. This unusual situation has affected the mental state of citizens, which has the potential to lead to the development of post-traumatic stress and depression. This study aimed to assess the level of stress in dental students in the context of the outbreak of the SARS-CoV-2 virus pandemic. A survey on the PSS-10 scale was prepared to measure the level of perceived stress. The study included 164 dental students at the Faculty of Medical Sciences of the Medical University of Silesia in Katowice, Poland. The results showed the impact of COVID-19 on the stress of students, with 67.7% reporting high levels of stress. The study also revealed that stress was higher among older female students. This paper recommends that the university provide more intensive psychological care as psychological first aid strategies in epidemics or natural disasters and to consider telemedicine in order to deliver services due to the limitations of the pandemic

    The influence of chlorine in indoor swimming pools on the composition of breathing phase of professional swimmers

    Get PDF
    Objectives: Swimming is one of the most popular forms of physical activity. Pool water is cleaned with chlorine, which - in combination with compounds contained in water - could form chloramines and trichloromethane in the swimmer’s lungs. The aim of the present study was to examine the effect of swimming training in an indoor pool on the composition of swimmers’ respiratory phase metabolomics, and develop a system to provide basic information about its impact on the swimmer’s airway mucosa metabolism, which could help to assess the risk of secondary respiratory tract diseases i.e. sport results, condition, and health including lung acute and chronic diseases). Design: A group of competitive swimmers participated in the study and samples of their respiratory phase before training, immediately after training, and 2 h after training were assessed. Methods: Sixteen male national and international-level competitive swimmers participated in this study. Respiratory phase analysis of the indoor swimming pool swimmers was performed. Gas chromatography combined with mass spectrometry (GCMS) was used in the measurements. All collected data were transferred to numerical analysis for trends of tracking and mapping. The breathing phase was collected on special porous material and analyzed using GCMS headspace. Results: The obtained samples of exhaled air were composed of significantly different metabolomics when compared before, during and after exercise training. This suggests that exposition to indoor chlorine causes changes in the airway mucosa Conclusion: This phenomenon may be explained by occurrence of a chlorine-initiated bio-reaction in the swimmers’ lungs. The obtained results indicate that chromatographic exhaled gas analysis is a sensitive method of pulmonary metabolomic changes assessment. Presented analysis of swimmers exhaled air indicates, that indoor swimming may be responsible for airway irritation caused by volatile chlorine compounds and their influence on lung metabolism

    Internet - Technical Developments and Applications 2

    No full text
    The unusual direct progress of civilization in many fields concerning technical sciences is being observed in the period of last two decades. Experiencing extraordinary dynamics of the development of technological processes, particularly in ways of communicating, makes us believe that  the information society is coming into existence. Having the information in today’s world of changing attitudes and socio-economic conditions can be perceived as one of the most important advantages. The content of this book is divided into four parts: ·         Mathematical and technical fundamentals, ·         Information management systems and project management ·         Information security and business continuity management ·         Interdisciplinary problems This monograph has been prepared to contribute in a significant way to the success of implementing consequences of human imagination  into social life. The authors believe that this monograph will influence the further technology development regarding IT with constantly expanding spectrum of its applications

    Semantic Segmentation of 12-Lead ECG Using 1D Residual U-Net with Squeeze-Excitation Blocks

    No full text
    Analyzing biomedical data is a complex task that requires specialized knowledge. The development of knowledge and technology in the field of deep machine learning creates an opportunity to try and transfer human knowledge to the computer. In turn, this fact influences the development of systems for the automatic evaluation of the patient’s health based on data acquired from sensors. Electrocardiography (ECG) is a technique that enables visualizing the electrical activity of the heart in a noninvasive way, using electrodes placed on the surface of the skin. This signal carries a lot of information about the condition of heart muscle. The aim of this work is to create a system for semantic segmentation of the ECG signal. For this purpose, we used a database from Lobachevsky University available on Physionet, containing 200, 10-second, and 12-lead ECG signals with annotations, and applied one-dimensional U-Net with the addition of squeeze-excitation blocks. The created model achieved a set of parameters indicating high performance (for the test set: accuracy—0.95, AUC—0.99, specificity—0.95, sensitivity—0.99) in extracting characteristic parts of ECG signal such as P and T-waves and QRS complex, regardless of the lead

    Continuous representation of unevenly sampled signals : an application to the analysis of heart rate variability

    No full text
    The various methods for continuous representation of heart rate were tested on artificial signals as well as on real patient data. The limitation for the tests on real HR data is, that no error for the HR representation can be calculated for the values between measurements since thes 'are unknown. It can clearly be seen that only two of the methods for continuous representation of HR actually retain the original HR values: IHR and DECON. By improvements of the algorithm used for the deconvolution method in terms of higher computational precision, the errors obtained with this technique can be further reduced. But even in its current state, DECON is clearly superior to all the other techniques and can serve to judge the quality of all simplified techniques for the continuous representation of heart rate

    Comparison of the Classification Results Accuracy for CT Soft Tissue and Bone Reconstructions in Detecting the Porosity of a Spongy Tissue

    No full text
    The aim of the study was to compare the accuracy of the classification pertaining to the results of two types of soft tissue and bone reconstructions of the spinal CT in detecting the porosity of L1 vertebral body spongy tissue. The dataset for each type of reconstruction (high-resolution bone reconstruction and soft tissue reconstruction) included 400 sponge tissue images from 50 healthy patients and 50 patients with osteoporosis. Texture feature descriptors were calculated based on the statistical analysis of the grey image histogram, autoregression model, and wavelet transform. The data dimensional reduction was applied by feature selection using nine methods representing various approaches (filter, wrapper, and embedded methods). Eleven methods were used to build the classifier models. In the learning process, hyperparametric optimization based on the grid search method was applied. On this basis, the most effective model and the optimal subset of features for each selection method used were determined. In the case of bone reconstruction images, four models achieved a maximum accuracy of 92%, one of which had the highest sensitivity of 95%, with a specificity of 89%. For soft tissue reconstruction images, five models achieved the highest testing accuracy of 95%, whereas the other quality indices (TPR and TNR) were also equal to 95%. The research showed that the images derived from soft tissue reconstruction allow for obtaining more accurate values of texture parameters, which increases the accuracy of the classification and offers better possibilities for diagnosing osteoporosis

    Innovations in biomedical engineering

    No full text
    corecore