83 research outputs found
Imaging Long-Term Fate of Intramyocardially Implanted Mesenchymal Stem Cells in a Porcine Myocardial Infarction Model
The long-term fate of stem cells after intramyocardial delivery is unknown. We used noninvasive, repetitive PET/CT imaging with [18F]FEAU to monitor the long-term (up to 5 months) spatial-temporal dynamics of MSCs retrovirally transduced with the sr39HSV1-tk gene (sr39HSV1-tk-MSC) and implanted intramyocardially in pigs with induced acute myocardial infarction. Repetitive [18F]FEAU PET/CT revealed a biphasic pattern of sr39HSV1-tk-MSC dynamics; cell proliferation peaked at 33–35 days after injection, in periinfarct regions and the major cardiac lymphatic vessels and lymph nodes. The sr39HSV1-tk-MSC–associated [18F]FEAU signals gradually decreased thereafter. Cardiac lymphography studies using PG-Gd-NIRF813 contrast for MRI and near-infrared fluorescence imaging showed rapid clearance of the contrast from the site of intramyocardial injection through the subepicardial lymphatic network into the lymphatic vessels and periaortic lymph nodes. Immunohistochemical analysis of cardiac tissue obtained at 35 and 150 days demonstrated several types of sr39HSV1-tk expressing cells, including fibro-myoblasts, lymphovascular cells, and microvascular and arterial endothelium. In summary, this study demonstrated the feasibility and sensitivity of [18F]FEAU PET/CT imaging for long-term, in-vivo monitoring (up to 5 months) of the fate of intramyocardially injected sr39HSV1-tk-MSC cells. Intramyocardially transplanted MSCs appear to integrate into the lymphatic endothelium and may help improve myocardial lymphatic system function after MI
Intratumoral CRH modulates immuno-escape of ovarian cancer cells through FasL regulation
Although corticotropin-releasing hormone (CRH) and Fas ligand (FasL) have been documented in ovarian carcinoma, a clear association with tumour progression and immuno-escape has not been established. FasL plays an important role in promoting tumour cells' ability to counterattack immune cells. Here, we examined immunohistochemically the expression of CRH, CRHR1, CRHR2 and FasL in 47 human ovarian cancer cases. The ovarian cancer cell lines OvCa3 and A2780 were further used to test the hypothesis that CRH might contribute to the immune privilege of ovarian tumours, by modulating FasL expression on the cancer cells. We found that CRH, CRHR1, CRHR2 and FasL were expressed in 68.1, 70.2, 63.8 and 63.8% of the cases respectively. Positivity for CRH or FasL expression was associated with higher tumour stage. Finally, CRH increased the expression of FasL in OvCa3 and A2780 cells through CRHR1 thereby potentiated their ability to induce apoptosis of activated peripheral blood lymphocytes. Corticotropin-releasing hormone produced by human ovarian cancer might favour survival and progression of the tumour by promoting its immune privilege. These findings support the hypothesis that CRHR1 antagonists could potentially be used against ovarian cancer
Oncolytic Adenoviruses Armed with Thymidine Kinase Can Be Traced by PET Imaging and Show Potent Antitumoural Effects by Ganciclovir Dosing
Replication-competent adenoviruses armed with thymidine kinase (TK) combine the concepts of virotherapy and suicide gene therapy. Moreover TK-activity can be detected by noninvasive positron emission-computed tomography (PET) imaging, what could potentially facilitate virus monitoring in vivo. Here, we report the generation of a novel oncolytic adenovirus that incorporates the Tat8-TK gene under the control of the Major Late Promoter in a highly selective backbone thus providing selectivity by targeting the retinoblastoma pathway. The selective oncolytic TK virus, termed ICOVIR5-TK-L, showed reduced potency compared to a non-selective counterpart. However the combination of ICOVIR5-TK-L with ganciclovir (GCV) induced a potent antitumoural effect similar to that of wild type adenovirus in a preclinical model of pancreatic cancer. Although the treatment with GCV provoked a reduction in the viral yield, both in vitro and in vivo, a two-cycle treatment of virus and GCV resulted in an enhanced antitumoral response that correlated with high TK-activity, based on microPET measurements. Thus, TK-expressing oncolytic adenoviruses can be traced by PET imaging providing real time information on the activity of the virus and its antitumoral potency can be optimized by GCV dosing
Evaluation of Two Internalizing Carcinoembryonic Antigen Reporter Genes for Molecular Imaging
PurposeThe objective of this article is to develop internalizing positron emission tomography (PET) reporter genes for tracking genetically modified T cells in vivo.ProceduresThe transmembrane and cytoplasmic domains of the human transferrin receptor (TfR) and CD5 were each fused to the carcinoembryonic (CEA) minigene N-A3 and expressed in Jurkat T cells. Internalization was evaluated by confocal microscopy or by intracellular uptake of ¹²⁵I-labeled anti-CEA scFv-Fc. Reporter gene-transfected Jurkat xenografts in mice were analyzed by immunohistochemistry (IHC) and imaged by PET using ¹²⁴I- or ⁶⁴Cu-scFv-Fc as tracers.ResultsSurface expression of TR(1-99)-NA3 was lower than that of NA3-CD5. Both reporter genes were internalized following binding of the anti-CEA antibody fragment. IHC of tumors showed strong staining of NA3-CD5, whereas TR(1-99)-NA3 stained weakly. Specific targeting of TR(1-99)-NA3 or NA3-CD5 was shown by PET in xenografted mice.ConclusionsThe in vivo imaging studies suggest a potential application of the internalizing form of CEA (N-A3) as a PET reporter gene
A Biological Global Positioning System: Considerations for Tracking Stem Cell Behaviors in the Whole Body
Many recent research studies have proposed stem cell therapy as a treatment for cancer, spinal cord injuries, brain damage, cardiovascular disease, and other conditions. Some of these experimental therapies have been tested in small animals and, in rare cases, in humans. Medical researchers anticipate extensive clinical applications of stem cell therapy in the future. The lack of basic knowledge concerning basic stem cell biology-survival, migration, differentiation, integration in a real time manner when transplanted into damaged CNS remains an absolute bottleneck for attempt to design stem cell therapies for CNS diseases. A major challenge to the development of clinical applied stem cell therapy in medical practice remains the lack of efficient stem cell tracking methods. As a result, the fate of the vast majority of stem cells transplanted in the human central nervous system (CNS), particularly in the detrimental effects, remains unknown. The paucity of knowledge concerning basic stem cell biology—survival, migration, differentiation, integration in real-time when transplanted into damaged CNS remains a bottleneck in the attempt to design stem cell therapies for CNS diseases. Even though excellent histological techniques remain as the gold standard, no good in vivo techniques are currently available to assess the transplanted graft for migration, differentiation, or survival. To address these issues, herein we propose strategies to investigate the lineage fate determination of derived human embryonic stem cells (hESC) transplanted in vivo into the CNS. Here, we describe a comprehensive biological Global Positioning System (bGPS) to track transplanted stem cells. But, first, we review, four currently used standard methods for tracking stem cells in vivo: magnetic resonance imaging (MRI), bioluminescence imaging (BLI), positron emission tomography (PET) imaging and fluorescence imaging (FLI) with quantum dots. We summarize these modalities and propose criteria that can be employed to rank the practical usefulness for specific applications. Based on the results of this review, we argue that additional qualities are still needed to advance these modalities toward clinical applications. We then discuss an ideal procedure for labeling and tracking stem cells in vivo, finally, we present a novel imaging system based on our experiments
- …