54 research outputs found

    Five-year safety and efficacy of leadless pacemakers in a Dutch cohort

    Get PDF
    BACKGROUND: Adequate real-world safety and efficacy of leadless pacemakers (LPs) have been demonstrated up to 3 years after implantation. Longer-term data are warranted to assess the net clinical benefit of leadless pacing.OBJECTIVE: The purpose of this study was to evaluate the long-term safety and efficacy of LP therapy in a real-world cohort.METHODS: In this retrospective cohort study, all consecutive patients with a first LP implantation from December 21, 2012, to December 13, 2016, in 6 Dutch high-volume centers were included. The primary safety endpoint was the rate of major procedure- or device-related complications (ie, requiring surgery) at 5-year follow-up. Analyses were performed with and without Nanostim battery advisory-related complications. The primary efficacy endpoint was the percentage of patients with a pacing capture threshold ≤2.0 V at implantation and without ≥1.5-V increase at the last follow-up visit.RESULTS: A total of 179 patients were included (mean age 79 ± 9 years), 93 (52%) with a Nanostim and 86 (48%) with a Micra VR LP. Mean follow-up duration was 44 ± 26 months. Forty-one major complications occurred, of which 7 were not advisory related. The 5-year major complication rate was 4% without advisory-related complications and 27% including advisory-related complications. No advisory-related major complications occurred a median 10 days (range 0-88 days) postimplantation. The pacing capture threshold was low in 163 of 167 patients (98%) and stable in 157 of 160 (98%).CONCLUSION: The long-term major complication rate without advisory-related complications was low with LPs. No complications occurred after the acute phase and no infections occurred, which may be a specific benefit of LPs. The performance was adequate with a stable pacing capture threshold.</p

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries

    Get PDF
    Rationale: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. Objective: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. Methods and Results: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. Conclusions: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries

    Get PDF
    RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus

    Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy

    Get PDF
    Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries.

    Get PDF
    RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10 CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 nea

    Permanent Leadless Cardiac Pacemaker Therapy: A Comprehensive Review

    No full text
    A new technology, leadless pacemaker therapy, was recently introduced clinically to address lead- and pocket-related complications in conventional transvenous pacemaker therapy. These leadless devices are self-contained right ventricular single-chamber pacemakers implanted by using a femoral percutaneous approach. In this review of available clinical data on leadless pacemakers, early results with leadless devices are compared with historical results with conventional single-chamber pacing. Both presently manufactured leadless pacemakers show similar complications, which are mostly related to the implant procedure: cardiac perforation, device dislocation, and femoral vascular access site complications. In comparison with conventional transvenous single-chamber pacemakers, slightly higher short-term complication rates have been observed: 4.8% for leadless pacemakers versus 4.1% for conventional pacemakers. The complication rate of the leadless pacemakers is influenced by the implanter learning curve for this new procedure. No long-term outcome data are yet available for the leadless pacemakers. Larger leadless pacing trials, with long-term follow-up and direct randomized comparison with conventional pacing systems, will be required to define the proper clinical role of these leadless systems. Although current leadless pacemakers are limited to right ventricular pacing, future advanced, communicating, multicomponent systems are expected to expand the potential benefits of leadless therapy to a larger patient populatio

    End-of-life Management of Leadless Cardiac Pacemaker Therapy

    No full text
    The clinically available leadless pacemakers for patients with a single-chamber pacing indication have shown to be safe and effective. However, the optimal end-of-life strategy of this novel technique is undefined. Suggested strategies comprise of (a) placing an additional leadless device adjacent to the leadless pacemaker, or (b) retrieving the non-functioning leadless pacemaker and subsequently implanting a new device. Although initial studies demonstrate promising results, early experience of acute and mid-term retrieval feasibility and safety remains mixed. We suggest that the approach of leadless pacemaker retrieval is more appealing to limit the amount of non-functioning intracardiac hardware. In addition, potential risks for device-device interference, and unknown long-term complications associated with multiple intracardiac devices are prevented. The potential inability to retrieve chronically implanted leadless pacemakers limits the application of this novel technology. Therefore, long-term prospective analysis is required to define the most optimal end-of-life strateg

    The learning curve associated with the implantation of the Nanostim leadless pacemaker

    No full text
    Purpose: Use of novel medical technologies, such as leadless pacemaker (LP) therapy, may be subjected to a learning curve effect. The objective of the current study was to assess the impact of operators’ experience on the occurrence of serious adverse device effects (SADE) and procedural efficiency. Methods: Patients implanted with a Nanostim LP (Abbott, USA) within two prospective studies (i.e., LEADLESS ll IDE and Leadless Observational Study) were assessed. Patients were categorized into quartiles based on operator experience. Learning curve analysis included the comparison of SADE rates at 30 days post-implant per quartile and between patients in quartile 4 (> 10 implants) and patients in quartiles 1 through 3 (1–10 implants). Procedural efficiency was assessed based on procedure duration and repositioning attempts. Results: Nanostim LP implant was performed in 1439 patients by 171 implanters at 60 centers in 10 countries. A total of 91 (6.4%) patients experienced a SADE in the first 30 days. SADE rates dropped from 7.4 to 4.5% (p = 0.038) after more than 10 implants per operator. Total procedure duration decreased from 30.9 ± 19.1 min in quartile 1 to 21.6 ± 13.2 min (p < 0.001) in quartile 4. The need for multiple repositionings during the LP procedure reduced in quartile 4 (14.8%), compared to quartiles 1 (26.8%; p < 0.001), 2 (26.6%; p < 0.001), and 3 (20.4%; p = 0.03). Conclusions: Learning curves exist for Nanostim LP implantation. Procedure efficiency improved with increased operator experience, according to a decrease in the incidence of SADE, procedure duration, and repositioning attempts
    • …
    corecore