16 research outputs found
Analisa Perbedaan Persepsi Antara Konsumen Perokok Dan Non Perokok Terhadap Ketersediaan Fasilitas Smoking Area Di Food Court
Pada saat ini jumlah perokok di Indonesia meningkat dilihat dari data WHO. Penelitian ini dilakukan untuk mengetahui perbedaan persepsi mengenai ketersedian fasilitas smoking area di food court dari konsumen perokok maupun konsumen non perokok. Data penelitian ini sudah memenuhi syarat uji validitas, uji reliabilitas, analisis deskriptif, uji beda, uji normalitas dan uji hipotesis. Hasil penelitian ini menunjukan bahwa faktor psikologi, image, dan fisik memiliki perbedaan yang signifikan terhadap setuju atau tidak setujunya konsumen perokok dan konsumen non perokok jika food court menyediakan fasilitas smoking area.At this time the number of smokers in Indonesian increased base on WHO data. This study was conducted to determine differences in perceptions about the availability smoking area facilities on the food court from smoker consumers and non smokers consumers. This research data has been qualified by validity test, reliability test, descriptive analysis, different test, normality test and hypothesis test. The results of these studies show that psychological factors, image, and physical have a significant differences to agree or disagree from smokers consumers and non smokers consumers if food court provide the smoking area facilitie
High resolution imaging reveals heterogeneity in chromatin states between cells that is not inherited through cell division
BACKGROUND: Genomes of eukaryotes exist as chromatin, and it is known that different chromatin states can influence gene regulation. Chromatin is not a static structure, but is known to be dynamic and vary between cells. In order to monitor the organisation of chromatin in live cells we have engineered fluorescent fusion proteins which recognize specific operator sequences to tag pairs of syntenic gene loci. The separation of these loci was then tracked in three dimensions over time using fluorescence microscopy. RESULTS: We established a work flow for measuring the distance between two fluorescently tagged, syntenic gene loci with a mean measurement error of 63Â nm. In general, physical separation was observed to increase with increasing genomic separations. However, the extent to which chromatin is compressed varies for different genomic regions. No correlation was observed between compaction and the distribution of chromatin markers from genomic datasets or with contacts identified using capture based approaches. Variation in spatial separation was also observed within cells over time and between cells. Differences in the conformation of individual loci can persist for minutes in individual cells. Separation of reporter loci was found to be similar in related and unrelated daughter cell pairs. CONCLUSIONS: The directly observed physical separation of reporter loci in live cells is highly dynamic both over time and from cell to cell. However, consistent differences in separation are observed over some chromosomal regions that do not correlate with factors known to influence chromatin states. We conclude that as yet unidentified parameters influence chromatin configuration. We also find that while heterogeneity in chromatin states can be maintained for minutes between cells, it is not inherited through cell division. This may contribute to cell-to-cell transcriptional heterogeneity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-016-0111-y) contains supplementary material, which is available to authorized users
Stereotactic Ablative Radiotherapy for the Management of Spinal Metastases: A Review
Importance: Rising cancer incidence combined with improvements in systemic and local therapies extending life expectancy are translating into more patients with spinal metastases. This makes the multidisciplinary management of spinal metastases and development of new therapies increasingly important. Spinal metastases may cause significant pain and reduced quality of life and lead to permanent neurological disability if compression of the spinal cord and/or nerve root occurs. Until recently, treatments for spinal metastases were not optimal and provided temporary local control and pain relief. Spinal stereotactic ablative radiotherapy (SABR) is an effective approach associated with an improved therapeutic ratio, with evolving clinical application. Objective: To review the literature of spinal SABR for spinal metastases, discuss a multidisciplinary approach to appropriate patient selection and technical considerations, and summarize current efforts to combine spinal SABR with systemic therapies. Evidence Review: The MEDLINE database was searched to identify articles reporting on spinal SABR to September 30, 2018. Articles including clinical trials, prospective and retrospective studies, systematic reviews, and consensus recommendations were selected for relevance to multidisciplinary management of spinal metastases. Results: Fifty-nine unique publications with 5655 patients who underwent SABR for spinal metastases were included. Four comprehensive frameworks for patient selection were discussed. Spinal SABR was associated with 1-year local control rates of approximately 80% to 90% in the de novo setting, greater than 80% in the postoperative setting, and greater than 65% in the reirradiation setting. The most commonly discussed adverse effect was development of a vertebral compression fracture with variable rates, most commonly reported as approximately 10% to 15%. High-level data on the combination of SABR with modern therapies are still lacking. At present, 19 clinical trials are ongoing, mainly focusing on combined modality therapies, radiotherapy prescription dose, and oligometastic disease. Conclusions and Relevance: These findings suggest that spinal SABR may be an effective treatment option for well-selected patients with spinal metastases, achieving high rates of local tumor control with moderate rates of adverse effects. Optimal management should include review by a multidisciplinary care team
3D structures of individual mammalian genomes studied by single-cell Hi-C
The folding of genomic DNA from the beads-on-a-string like structure of nucleosomes into higher order assemblies is critically linked to nuclear processes. We have calculated the first 3D structures of entire mammalian genomes using data from a new chromosome conformation capture procedure that allows us to first image and then process single cells. This has allowed us to study genome folding down to a scale of <100 kb and to validate the structures. We show that the structures of individual topological-associated domains and loops vary very substantially from cell-to-cell. By contrast, A/B compartments, lamin-associated domains and active enhancers/promoters are organized in a consistent way on a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. Through studying pluripotency factor- and NuRD-regulated genes, we illustrate how single cell genome structure determination provides a novel approach for investigating biological processes