48 research outputs found
Alcohol consumption in young adults: the role of multisensory imagery.
Accepted 19.11.2013Little is known about the subjective experience of alcohol desire and craving in young people. Descriptions of alcohol urges continue to be extensively used in the everyday lexicon of young, non-dependent drinkers. Elaborated Intrusion (EI) Theory contends that imagery is central to craving and desires, and predicts that alcohol-related imagery will be associated with greater frequency and amount of drinking. This study involved 1,535 age stratified 18- 25 year olds who completed an alcohol–related survey that included the Imagery scale of the Alcohol Craving Experience (ACE) questionnaire. Imagery items predicted 12-16% of the variance in concurrent alcohol consumption. Higher total Imagery subscale scores were linearly associated with greater drinking frequency and lower self-efficacy for moderate drinking. Interference with alcohol imagery may have promise as a preventive or early intervention target in young people
Symbiosis between the TRECVid benchmark and video libraries at the Netherlands Institute for Sound and Vision
Audiovisual archives are investing in large-scale digitisation efforts of their analogue holdings and, in parallel, ingesting an ever-increasing amount of born- digital files in their digital storage facilities. Digitisation opens up new access paradigms and boosted re-use of audiovisual content. Query-log analyses show the shortcomings of manual annotation, therefore archives are complementing these annotations by developing novel search engines that automatically extract information from both audio and the visual tracks. Over the past few years, the TRECVid benchmark has developed a novel relationship with the Netherlands Institute of Sound and Vision (NISV) which goes beyond the NISV just providing data and use cases to TRECVid. Prototype and demonstrator systems developed as part of TRECVid are set to become a key driver in improving the quality of search engines at the NISV and will ultimately help other audiovisual archives to offer more efficient and more fine-grained access to their collections. This paper reports the experiences of NISV in leveraging the activities of the TRECVid benchmark
International feasibility study for the Women's Wellness with Type 2 Diabetes Programme (WWDP): An eHealth enabled 12-week intervention programme for midlife women with type 2 diabetes.
AimsThe current study aimed to examine feasibility of participant recruitment and retention rates for the Women's Wellness with Type 2 Diabetes program (WWDP), and to assess initial efficacy of the program in improving wellbeing outcomes.Methods70 midlife women with type 2 diabetes mellitus (T2DM) participated in a 12-week wellness-focused intervention, the WWDP. The WWDP involved a structured book (with participatory activities), an interactive website and nurse consultations. This study had an Australian and a UK arm. Analyses were conducted using chi-square, McNemar, paired t-test, and Wilcoxon signed-ranks tests.ResultsThe attrition rate for the sample was 22.2%. Overall, significant improvement was observed in diabetes distress (DD), diabetes self-efficacy, weight, BMI, menopausal symptoms and sleep symptoms from baseline to program completion at 12 weeks. Australian participants were also more likely to meet fruit recommendation guidelines and had significant waist- and hip-circumference reductions.ConclusionsGood retention rates and initial efficacy findings indicated feasibility of the WWDP as a promising 12-week health and wellness program for women with T2DM. They also suggest incorporating a focus on self-efficacy and gendered information may be important in improving wellness and health outcomes related to distress and menopause
Combining visual and textual systems within the context of user feedback
It has been proven experimentally, that a combination of textual and visual representations can improve the retrieval performance ([20], [23]). It is due to the fact, that the textual and visual feature spaces often represent complementary yet correlated aspects of the same image, thus forming a composite system.
In this paper, we present a model for the combination of visual and textual sub-systems within the user feedback context. The model was inspired by the measurement utilized in quantum mechanics (QM) and the tensor product of co-occurrence (density) matrices, which represents a density matrix of the composite system in QM. It provides a sound and natural framework to seamlessly integrate multiple feature spaces by considering them as a composite system, as well as a new way of measuring the relevance of an image with respect to a context. The proposed approach takes into account both intra (via co-occurrence matrices) and inter (via tensor operator) relationships between features’ dimensions. It is also computationally cheap and scalable to large data collections. We test our approach on ImageCLEF2007photo data collection and present interesting findings
Fire detection from social media images by means of instance-based learning
Social media can provide valuable information to support decision making in crisis management, such as in accidents, explosions, and fires. However, much of the data from social media are images, which are uploaded at a rate that makes it impossible for human beings to analyze them. To cope with that problem, we design and implement a database-driven architecture for fast and accurate fire detection named FFireDt. The design of FFireDt uses the instance-based learning through indexed similarity queries expressed as an extension of the relational Structured Query Language. Our contributions are: (i) the design of the Fast-Fire Detection (FFireDt), which achieves efficiency and efficacy rates that rival to the state-of-the-art techniques; (ii) the sound evaluation of 36 image descriptors, for the task of image classification in social media; (iii) the evaluation of content-based indexing with respect to the construction of instance-based classification systems; and (iv) the curation of a ground-truth annotated dataset of fire images from social media. Using real data from Flickr, the experiments showed that system FFireDt was able to achieve a precision for fire detection comparable to that of human annotators. Our results are promising for the engineering of systems to monitor images uploaded to social media services.FAPESPCNPqCAPESSTIC-AmSudRESCUER project, funded by the European Commission (Grant: 614154) and by the CNPq/MCTI (Grant: 490084/2013-3)International Conference on Enterprise Information Systems - ICEIS (17. 2015 Barcelona
Fire detection from social media images by means of instance-based learning
Social media can provide valuable information to support decision making in crisis management, such as in accidents, explosions, and fires. However, much of the data from social media are images, which are uploaded at a rate that makes it impossible for human beings to analyze them. To cope with that problem, we design and implement a database-driven architecture for fast and accurate fire detection named FFireDt. The design of FFireDt uses the instance-based learning through indexed similarity queries expressed as an extension of the relational Structured Query Language. Our contributions are: (i) the design of the Fast-Fire Detection (FFireDt), which achieves efficiency and efficacy rates that rival to the state-of-the-art techniques; (ii) the sound evaluation of 36 image descriptors, for the task of image classification in social media; (iii) the evaluation of content-based indexing with respect to the construction of instance-based classification systems; and (iv) the curation of a ground-truth annotated dataset of fire images from social media. Using real data from Flickr, the experiments showed that system FFireDt was able to achieve a precision for fire detection comparable to that of human annotators. Our results are promising for the engineering of systems to monitor images uploaded to social media services.FAPESPCNPqCAPESSTIC-AmSudRESCUER project, funded by the European Commission (Grant: 614154) and by the CNPq/MCTI (Grant: 490084/2013-3)International Conference on Enterprise Information Systems - ICEIS (17. 2015 Barcelona