17 research outputs found

    Conjugate addition nitro-Mannich reaction of carbon and heteroatom nucleophiles to nitroalkenes

    Get PDF
    The conjugate addition nitro-Mannich reactions of ethyl-β-nitroacrylate (1) and β-nitrostyrene (2) with electron rich aromatic nucleophiles, stabilized carbanions, alcohols, amines, thiols, and diphenyl phosphine oxide were investigated. The one pot conjugate addition nitro-Mannich reaction was unsuccessful except for the addition of alkoxides to 2 in alcohol as solvent. Isolation of the conjugate addition products followed by deprotonation with nBuLi and treatment with a simple imine in the presence of TFA led to β-nitroamine derived products. Products derived from 1 spontaneously cyclised in only a few examples and on the whole led to inherently unstable products. Products derived from 2 were isolated as their trifluoroacetamides, gave good yields of single diastereoisomers for aromatic and alkoxide nucleophiles and the structures were verified by single crystal X-ray crystallography. Products derived from amine nucleophiles were isolated in low yields while sulfur nucleophiles gave poor diastereoselectivities

    Synthesis and biological evaluation of benzodiazepines containing a pentafluorosulfanyl group

    Get PDF
    The widely used pentafluorosulfanyl group (SF5) was deployed as a bioisosteric replacement for a chloro-group in the benzodiazepine diazepam (Valium™). Reaction of 2-amino-5-pentafluorosulfanyl-benzophenone with chloroacetyl chloride followed by hexamethylenetetramine, in the presence of ammonia, led to 7-sulfurpentafluoro-5-phenyl-1H-benzo[1,4]diazepin-2(3H)-one (2c). The latter was able to undergo a Pd-catalysed ortho-arylation, demonstrating that these highly fluorinated benzodiazepines can be further modified to form more complicated scaffolds. The replacement of Cl by the SF5 group, led to a loss of potency for potentiating GABAA receptor activation, most likely because of a lost ligand interaction with His102 in the GABAA receptor α subunit. Dedicated to Professor Jonathan Williams, an inspirational and humble pioneer, a colleague and mentor in chemistry

    Base-Controlled Diastereoselective Synthesis of Either anti- or syn-β-Aminonitriles

    Get PDF
    Deprotonation of secondary alkane nitriles with nBuLi and addition to aryl imines gives kinetic anti-β-aminonitriles. Use of LHMDS allows reversible protonation of the reaction intermediate to give syn-β-aminonitriles. The pure diastereosiomers can be isolated in good yields, and the mechanism was elucidated

    Novel benzothiazole half-squaraines: model chromophores to study dye–TiO2 interactions in dye-sensitized solar cells

    Get PDF
    We report the synthesis of 9 new half squaraine (HfSQ) dyes; 5 containing a benzothiazole moiety and 4 containing an indolenine moiety. X-ray single crystal structural and characterisation data have been correlated with device data to understand the widely reported but poorly understood influence of S heteroatoms on DSC device performance. The S heteroatom in these new dyes has also been used as an atomic probe of the dye–TiO2 interface to dye binding and orientation. Thus, for the first time, using the S heteroatom probe, angle-resolved X-ray photoelectron (AR-XPS) data have shown these dyes sit horizontally at the dye–TiO2 interface confirmed by DFT computer modelling of novel and analogous HfSQ dyes with a benzoindole backbone

    Reductive conjugate addition nitro-Mannich route for the stereoselective synthesis of 1,2,3,4-tetrahydroquinoxalines

    Get PDF
    A concise, high yielding and structurally divergent synthesis of complex 1,2,3,4-tetrahydroquinoxalines with excellent diastereoselectivity is described. A wide array of nitroalkenes and imines derived from commercially available aromatic aldehydes and 2-chloroanalines were subjected to a key reductive conjugate addition nitro-Mannich reaction to give diastereomerically pure β-nitro amines. Sequential reduction of the nitro function followed by Pd-catalyzed intramolecular N-arylation of the resultant primary amine onto the 2-chloroanailine gives highly substituted 1,2,3,4-tetrahydroquinoxalines. Non basic imines were found to participate better in the nitro-Mannich reaction if the stronger acid methanesulfonic acid was used to promote the reaction. The 3 step reaction sequence should be useful for the array synthesis of drug like scaffolds

    Jahn-Teller distortion in 2-pyridyl-(1,2,3)-triazole-containing copper(ii) compounds

    Get PDF
    © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique. The syntheses, characterization and experimental solid state X-ray structures of five low-spin paramagnetic 2-pyridyl-(1,2,3)-triazole-copper compounds, [Cu(Ln)2Cl2], are presented in this study, for the following five Lnligands: L1= 2-(1-(p-tolyl)-1H-(1,2,3-triazol-4-yl)pyridine), L2= 2-(1-(4-chlorophenyl)-1H-(1,2,3-triazol-4-yl)pyridine), L3= 4-(4-(pyridin-2-yl)-1H-(1,2,3-triazol-4-yl)benzonitril), L4= 2-(1-phenyl-1H-(1,2,3-triazol-4-yl)pyridine) and L5= 2-(1-(4-(trifluoromethyl)phenyl)-1H-(1,2,3-triazol-4-yl)pyridine). These five [Cu(Ln)2Cl2] complexes each contain two bidentate 2-pyridyl-(1,2,3)-triazole (Ln) and two chloride ions as ligands, with the Cu-N(pyridine) bonds, Cu-N(triazole) and Cu-Cl bonds trans to each other. All five [Cu(Ln)2Cl2] compounds display elongation Jahn-Teller distortion, either along opposite Cu-N(triazole) bonds, or along opposite Cu-Cl bonds, as indicated by their obtained solid state crystal structures. Quantum chemistry calculations, using density functional theory, indicated however that elongation Jahn-Teller distortion is in fact possible along any two opposite bonds in these octahedral compounds with the elongation distortion along the opposite Cu-N(triazole) bonds being the most stable structure

    Noncovalent Interactions of pi Systems with Sulfur: The Atomic Chameleon of Molecular Recognition

    Get PDF
    The relative strength of noncovalent interactions between a thioether sulfur atom and various π systems in designed top pan molecular balances was determined by NMR spectroscopy. Compared to its oxygen counterpart, the sulfur atom displays a remarkable ability to interact with almost equal facility over the entire range of π systems studied, with the simple alkene emerging as the most powerful partner. With the exception of the O⋅⋅⋅heteroarene interaction, all noncovalent interactions of sulfur with π systems are favoured over oxygen

    Rotaxane Co-II Complexes as Field-Induced Single-Ion Magnets

    Get PDF
    Mechanically chelating ligands have untapped potential for the engineering of metal ion properties. Here we demonstrate this principle in the context of CoII-based single-ion magnets. Using multi-frequency EPR, susceptibility and magnetization measurements we found that these complexes show some of the highest zero field splittings reported for five-coordinate CoII complexes to date. The predictable coordination behaviour of the interlocked ligands allowed the magnetic properties of their CoII complexes to be evaluated computationally a priori and our combined experimental and theoretical approach enabled us to rationalize the observed trends. The predictable magnetic behaviour of the rotaxane CoII complexes demonstrates that interlocked ligands offer a new strategy to design metal complexes with interesting functionality

    Synthesis and Evaluation of a 2,11-Cembranoid-Inspired Library.

    Get PDF
    The 2,11-cembranoid family of natural products has been used as inspiration for the synthesis of a structurally simplified, functionally diverse library of octahydroisobenzofuran-based compounds designed to augment a typical medicinal chemistry library screen. Ring-closing metathesis, lactonisation and SmI2 -mediated methods were exemplified and applied to the installation of a third ring to mimic the nine-membered ring of the 2,11-cembranoids. The library was assessed for aqueous solubility and permeability, with a chemical-space analysis performed for comparison to the family of cembranoid natural products and a sample set of a screening library. Preliminary investigations in cancer cells showed that the simpler scaffolds could recapitulate the reported anti-migratory activity of the natural products

    A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes

    No full text
    Rotaxanes can display molecular chirality solely due to the mechanical bond between the axle and encircling macrocycle without the presence of covalent stereogenic units. However, the synthesis of such molecules remains challenging. We have discovered a combination of reaction partners that function as a chiral interlocking auxiliary to both orientate a macrocycle and, effectively, load it onto a new axle. Here we use these substrates to demonstrate the potential of a chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes by producing a range of examples with high enantiopurity (93–99% e.e.), including so-called ‘impossible’ rotaxanes whose axles lack any functional groups that would allow their direct synthesis by other means. Intriguingly, by varying the order of bond-forming steps, we can effectively choose which end of an axle the macrocycle is loaded onto, enabling the synthesis of both hands of a single target using the same reactions and building blocks
    corecore