40 research outputs found

    Las bases moleculares de la hemofilia A

    Get PDF

    Atrofia muscular espinal: Contribuciones para el conocimiento, prevención y tratamiento de la enfermedad y para la organización de familias

    Get PDF
    Este resumen refiere el trabajo realizado durante casi dos décadas dedicadas a la atención, investigación y experiencia en la atrofia muscular espinal (AME), una enfermedad de las neuronas motoras de la médula espinal. Casi todo el mundo conoce la poliomielitis, producida por el ataque de un virus a las neuronas motoras de la médula espinal. Los avances científicos han erradicado prácticamente la poliomielitis en nuestros niños y hoy en día constituye una enfermedad del pasado gracias a la vacunación. Si tuviéramos que describir la AME en pocas palabras la definiríamos como una poliomielitis mucho más agresiva que afecta a todo el cuerpo (a diferencia de la polio que era localizada) y a causa de un gen que está ausente o no funciona como corresponde.A diferencia de la polio, esta enfermedad genética está lejos de ser erradicada. Con una incidencia aproximada de 1/6000 a 1/10000 nacimientos, y una frecuencia de portadores de 1/40-1/60, la AME es considerada una de las principales causas hereditarias de mortalidad infantil. La AME presenta un patrón de herencia autosómico recesivo, es decir se necesitan dos copias del gen alterado para que se manifieste. Ese gen es el Survival Motor Neuron 1 (SMN1) localizado en el brazo largo del cromosoma 5 (5q13). La AME es siempre grave e invalidante y se clasifica en tres grupos (tipo I o aguda, tipo II o intermedio y tipo III crónica) de acuerdo con las manifestaciones clínicas, la edad de aparición de las mismas y su evolución

    RegistrAME: the Spanish self-reported patient registry of spinal muscular atrophy

    Get PDF
    Patient registry; Self-reported registry; Spinal muscular atrophyRegistre de pacients; Registre autoinformat; Atròfia muscular espinalRegistro de pacientes; Registro autoinformado; Atrofia muscular espinalBackground Spinal Muscular Atrophy (SMA) is a rare neuromuscular disorder characterized by progressive degeneration of motor neurons and muscle weakness resulting in premature death or severe motor disability. Over the last decade, SMA has dramatically changed thanks to new advances in care and the emergence of disease-specific treatments. RegistrAME is a self-reported specific disease registry with an accurate curation system. It has collected data on SMA patients in Spain since 2015, gathering demographic, clinical, and patient-reported outcome data, all of which are patient-relevant. RegistrAME is part of the TREAT NMD network. This study aims to describe the advantages and disadvantages of a self–reported SMA registry, as well as the different variables of interest in the health status of RegistrAME patients. Results In total, 295 living patients with a confirmed diagnosis of SMA-5q were included (aged 1 to 77 years; mean 20.28). Half of the patients (50.2%) were ≥ 16 years old; 22.03% were type 1, 48.47% were type 2, 28.82% were type 3, and 0.7% were type 4. All functional statuses (non-sitter, sitter, and walkers) could be observed in each SMA type. Adult patients harbored the least aggressive SMA types, however, they presented the greatest level of disability. Patients with SMA type 1 had scoliosis surgery about five years earlier than patients with SMA type 2. None of the type 1 patients who achieved ambulation were wheelchair-free outdoors. This was also evident in 62.5% of type 2 walker patients and 44% of type 3 walker patients. Of the SMA type 1 patients, 40% had a gastrostomy (of which 84% had two SMN2 copies). One in five children with SMA type 1 (one to seven years of age) were ventilation-free. Conclusions The information provided by RegistrAME in a “real-world” setting allows better management of family expectations, an adequate approach to the disease and patients’ needs, as well as a better understanding of the impact of the disease. It also helps monitor the evolution of care, which will result in the need for updated guidelines.Funding for this project was provided by FundAME

    Combination disease-modifying treatment in spinal muscular atrophy: A proposed classification

    Get PDF
    Spinal muscular atrophyAtròfia muscular espinalAtrofia muscular espinalWe sought to devise a rational, systematic approach for defining/grouping survival motor neuron-targeted disease-modifying treatment (DMT) scenarios. The proposed classification is primarily based on a two-part differentiation: initial DMT, and persistence/discontinuation of subsequent DMT(s). Treatment categories were identified: monotherapy add-on, transient add-on, combination with onasemnogene abeparvovec, bridging to onasemnogene abeparvovec, and switching to onasemnogene abeparvovec. We validated this approach by applying the classification to the 443 patients currently in the RESTORE registry and explored the demographics of these different groups of patients. This work forms the basis to explore the safety and efficacy profile of the different combinations of DMT in SMA

    Unusual context of CENPJ variants and primary microcephaly : compound heterozygosity and nonconsanguinity in an Argentinian patient

    Get PDF
    Primary microcephaly (MCPH) is a genetically heterogeneous disorder showing an autosomal recessive mode of inheritance. Patients with MCPH present head circumference values two or three standard deviations (SDs) significantly below the mean for age- and sex-matched populations. MCPH is associated with a nonprogressive mild to severe intellectual disability, with normal brain structure in most patients, or with a small brain and gyri without visceral malformations. We present the case of an adult patient born from Argentinian nonconsanguineous healthy parents. He had a head circumference >5 SD below the mean, cerebral neuroimaging showing hypoplasia of the corpus callosum, bilateral migration disorder with heterotopia of the sylvian fissure and colpocephaly. The patient was compound heterozygous for pathogenic variants in the CENPJ gene (c.289dupA inherited from his mother and c.1132 C > T inherited from his father). Our patient represents an uncommon situation for the usual known context of CENPJ and MCPH, including family origin (Argentinian), pedigree (nonconsanguineous), and genotype (a compound heterozygous case with two variants predicting a truncated protein). Next-generation sequencing studies applied in a broader spectrum of clinical presentations of MCPH syndromes may discover additional similar patients and families

    Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy

    Get PDF
    Objective Assessment of SMN2 copy number in patients with spinal muscular atrophy (SMA) is essential to establish careful genotype-phenotype correlations and predict disease evolution. This issue is becoming crucial in the present scenario of therapeutic advances with the perspective of SMA neonatal screening and early diagnosis to initiate treatment, as this value is critical to stratify patients for clinical trials and to define those eligible to receive medication. Several technical pitfalls and interindividual variations may account for reported discrepancies in the estimation of SMN2 copy number and establishment of phenotype-genotype correlations. Methods We propose a management guide based on a sequence of specified actions once SMN2 copy number is determined for a given patient. Regardless of the method used to estimate the number of SMN2 copies, our approach focuses on the manifestations of the patient to recommend how to proceed in each case. Results We defined situations according to SMN2 copy number in a presymptomatic scenario of screening, in which we predict the possible evolution, and when a symptomatic patient is genetically confirmed. Unexpected discordant cases include patients having a single SMN2 copy but noncongenital disease forms, 2 SMN2 copies compatible with type II or III SMA, and 3 or 4 copies of the gene showing more severe disease than expected. Conclusions Our proposed guideline would help to systematically identify discordant SMA cases that warrant further genetic investigation. The SMN2 gene, as the main modifier of SMA phenotype, deserves a more in-depth study to provide more accurate genotype-phenotype correlations

    Clinical Trial Readiness for Spinal Muscular Atrophy: Experience of an International Educational-Training Initiative

    Get PDF
    Several successful clinical trials have been conducted in spinal muscular atrophy (SMA) over recent years which have led to the approval of splicing modifiers and gene transfer therapies. With an increasing number of other agents progressing through pre-clinical and clinical development, increasing worldwide clinical trial readiness is becoming essential.SMA Europe initiated a clinical trial readiness project, which included the development of a pilot face-to-face educational-training initiative for clinical specialists and physiotherapists involved in SMA, with an emphasis on the patient perspective. Participants were selected through two surveys and, ahead of the meeting, a mock protocol with specific questions was provided. The initiative involved a series of presentations, role-play and interactive exercises. We describe here our experience and evaluation of this educational-training initiative, emphasising scientific aspects, psychosocial implications and level of satisfaction.From a participant, patient and industry perspective, such training was considered successful and met the objective, which was to improve clinical trial readiness in emerging sites. Resource planning, ethical considerations and communication with patients were identified as three important topics for future training. This initiative highlights the need to develop a training programme to achieve clinical trial readiness across Europe and showcases a collaborative effort with different stakeholders, clinicians, patient advocacy groups and sponsors to address an important issue

    A Novel Intragenic Duplication in the HDAC8 Gene Underlying a Case of Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a multisystemic genetic disorder characterized by distinctive facial features, growth retardation, and intellectual disability, as well as various systemic conditions. It is caused by genetic variants in genes related to the cohesin complex. Single-nucleotide variations are the best-known genetic cause of CdLS; however, copy number variants (CNVs) clearly underlie a substantial proportion of cases of the syndrome. The NIPBL gene was thought to be the locus within which clinically relevant CNVs contributed to CdLS. However, in the last few years, pathogenic CNVs have been identified in other genes such as HDAC8, RAD21, and SMC1A. Here, we studied an affected girl presenting with a classic CdLS phenotype heterozygous for a de novo ~32 kbp intragenic duplication affecting exon 10 of HDAC8. Molecular analyses revealed an alteration in the physiological splicing that included a 96 bp insertion between exons 9 and 10 of the main transcript of HDAC8. The aberrant transcript was predicted to generate a truncated protein whose accessibility to the active center was restricted, showing reduced ease of substrate entry into the mutated enzyme. Lastly, we conclude that the duplication is responsible for the patient’s phenotype, highlighting the contribution of CNVs as a molecular cause underlying CdLS

    High Mutational Heterogeneity, and New Mutations in the Human Coagulation Factor V Gene. Future Perspectives for Factor V Deficiency Using Recombinant and Advanced Therapies

    Get PDF
    Factor V is an essential clotting factor that plays a key role in the blood coagulation cascade on account of its procoagulant and anticoagulant activity. Eighty percent of circulating factor V is produced in the liver and the remaining 20% originates in the α-granules of platelets. In humans, the factor V gene is about 80 kb in size; it is located on chromosome 1q24.2, and its cDNA is 6914 bp in length. Furthermore, nearly 190 mutations have been reported in the gene. Factor V deficiency is an autosomal recessive coagulation disorder associated with mutations in the factor V gene. This hereditary coagulation disorder is clinically characterized by a heterogeneous spectrum of hemorrhagic manifestations ranging from mucosal or soft-tissue bleeds to potentially fatal hemorrhages. Current treatment of this condition consists in the administration of fresh frozen plasma and platelet concentrates. This article describes the cases of two patients with severe factor V deficiency, and of their parents. A high level of mutational heterogeneity of factor V gene was identified, nonsense mutations, frameshift mutations, missense changes, synonymous sequence variants and intronic changes. These findings prompted the identification of a new mutation in the human factor V gene, designated as Jaén-1, which is capable of altering the procoagulant function of factor V. In addition, an update is provided on the prospects for the treatment of factor V deficiency on the basis of yet-to-be-developed recombinant products or advanced gene and cell therapies that could potentially correct this hereditary disorder

    Natural history of KBG syndrome in a large European cohort

    Get PDF
    KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.</p
    corecore