82 research outputs found

    The NOTCH Pathway and Its Mutations in Mature B Cell Malignancies

    Get PDF
    The systematic application of next-generation sequencing to large cohorts of oncologic samples has opened a Pandora's box full of known and novel genetic lesions implicated in different steps of cancer development and progression. Narrowing down to B cell malignancies, many previously unrecognized genes emerged as recurrently mutated. The challenge now is to determine how the mutation in a given gene affects the biology of the disease, paving the way to functional genomics studies. Mutations in NOTCH family members are shared by several disorders of the B series, even if with variable frequencies and mutational patterns. In silico predictions, revealed that mutations occurring in NOTCH receptors, despite being qualitatively different, may have similar effects on protein processing, ultimately leading to enhanced pathway activation. The discovery of mutations occurring also in downstream players, either potentiating positive signals or compromising negative regulators, indicates that multiple mechanisms in neoplastic B cells concur to activate NOTCH pathway. These findings are supported by results obtained in chronic lymphocytic leukemia and splenic marginal zone B cell lymphoma where deregulation of NOTCH signaling has been functionally characterized. The emerging picture confirms that NOTCH signaling is finely tuned in cell- and microenvironment-dependent ways. In B cell malignancies, it contributes to the regulation of proliferation, survival and migration. However, deeper biological studies are needed to pinpoint the contribution of NOTCH in the hierarchy of events driving B cells transformation, keeping in mind its role in normal B cells development. Because of its relevance in leukemia and lymphoma biology, the NOTCH pathway might represent an appealing therapeutic target: the next few years will tell whether this potential will be fulfilled

    Targeting the microenvironment in chronic lymphocytic leukemia offers novel therapeutic options

    Get PDF
    Chronic lymphocytic leukemia (CLL) cells display features consistent with a defect in apoptosis and exhibit prolonged survival in vivo. Survival of these malignant cells is influenced by interactions with non-leukemic cells located in permissive niches in lymphoid organs. Leukemic cells subvert the normal architecture of the lymphoid organs, recruiting stromal cells, dendritic cells and T lymphocytes, all reported as playing active roles in the survival and proliferation of CLL. The same survival-promoting environment also rescues/protects leukemic cells from cytotoxic therapies, giving way to disease relapse. This review summarizes and discusses current knowledge about the intricate network of soluble and cell-bound signals regulating the life and death of CLL cells in different districts. At the same time, it seeks to hone in on which discrete molecular elements are best suited as targets for treating this still incurable disease

    CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential

    Get PDF
    AbstractOur interest in chronic lymphocytic leukemia (CLL) derives primarily from the exploitation of human diseases as strategic models for defining the in vivo biological roles of CD38. Using this model, we showed that CD38 triggers robust proliferation/survival signals modulated through the interactions with the CD31 ligand expressed by nurselike cells and by the stromal/endothelial components. By analyzing a cohort of 56 patients with clinically and molecularly characterized CLL, we show that (1) patients with CD38+/ZAP-70+ are characterized by enhanced migration toward Stromal derived factor-1α (SDF-1α)/CXCL12; (2) CD38 ligation leads to tyrosine phosphorylation of ZAP-70, showing that these markers are functionally linked; (3) ZAP-70 represents a limiting factor for the CD38 pathway in the CLL context, as shown by studying CD38-mediated signal transduction in 26 molecularly characterized patients; and (4) the CLL subgroup of patients defined on the basis of migratory potential is marked by a specific genetic signature, with a significant number of differentially expressed genes being involved in cell-cell interactions and movement. Altogether, the results of this work provide biological evidence for why the combined analysis of CD38 and ZAP-70 expression as determined in several clinical trials results in more dependable identification of patients with CLL who have aggressive disease

    Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment

    Get PDF
    The chronic lymphocytic leukemia (CLL) niche is a closed environment where leukemic cells derive growth and survival signals through their interaction with macrophages and T lymphocytes. Here, we show that the CLL lymph node niche is characterized by overexpression and activation of HIF-1a, which increases adenosine generation and signaling, affecting tumor and host cellular responses. Hypoxia in CLL lymphocytes modifies central metabolic pathways, protects against drug-driven apoptosis, and induces interleukin 10 (IL-10) production. In myeloid cells, it forces monocyte differentiation to macrophages expressing IRF4, IDO, CD163, and CD206, hallmarks of the M2 phenotype, which promotes tumor progression. It also induces IL-6 production and enhances nurturing properties. Low oxygen levels decrease T-cell proliferation, promote glycolysis, and cause the appearance of a population of PD-11 and IL-10–secreting T cells. Blockade of the A2A adenosine receptor counteracts these effects on all cell populations, making leukemic cells more susceptible to pharmacological agents while restoring immune competence and T-cell proliferation. Together, these results indicate that adenosine signaling through the A2A receptor mediates part of the effects of hypoxia. They also suggest that therapeutic strategies to inhibit the adenosinergic axis may be useful adjuncts to chemotherapy or tyrosine kinase inhibitors in the treatment of CLL patients

    Validation of a Simple, Rapid, and Cost-Effective Method for Acute Rejection Monitoring in Lung Transplant Recipients

    Get PDF
    Despite advances in immunosuppression therapy, acute rejection remains the leading cause of graft dysfunction in lung transplant recipients. Donor-derived cell-free DNA is increasingly being considered as a valuable biomarker of acute rejection in several solid organ transplants. We present a technically improved molecular method based on digital PCR that targets the mismatch between the recipient and donor at the HLA-DRB1 locus. Blood samples collected sequentially post-transplantation from a cohort of lung recipients were used to obtain proof-of-principle for the validity of the assay, correlating results with transbronchial biopsies and lung capacity tests. The results revealed an increase in dd-cfDNA during the first 2 weeks after transplantation related to ischemia-reperfusion injury (6.36 ± 5.36%, p < 0.0001). In the absence of complications, donor DNA levels stabilized, while increasing again during acute rejection episodes (7.81 ± 12.7%, p < 0.0001). Respiratory tract infections were also involved in the release of dd-cfDNA (9.14 ± 15.59%, p = 0.0004), with a positive correlation with C-reactive protein levels. Overall, the dd-cfDNA percentages were inversely correlated with the lung function values measured by spirometry. These results confirm the value of dd-cfDNA determination during post-transplant follow-up to monitor acute rejection in lung recipients, achieved using a rapid and inexpensive approach based on the HLA mismatch between donor and recipient

    NAD+-metabolizing ecto-enzymes shape tumor–host interactions: The chronic lymphocytic leukemia model

    Get PDF
    AbstractNicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme that can be released in the extracellular milieu. Here, it may elicit signals through binding purinergic receptors. Alternatively, NAD+ may be dismantled to adenosine, up-taken by cells and transformed to reconstitute the intracellular nucleotide pool. An articulated ecto-enzyme network is responsible for the nucleotide–nucleoside conversion. CD38 is the main mammalian enzyme that hydrolyzes NAD+, generating Ca2+-active metabolites. Evidence suggests that this extracellular network may be altered or used by tumor cells to (i) nestle in protected areas, and (ii) evade the immune response. We have exploited chronic lymphocytic leukemia as a model to test the role of the ecto-enzyme network, starting by analyzing the individual elements that make up the whole picture
    • …
    corecore