23 research outputs found

    Reliability analysis of GEM® Premier™ technology: a multicenter study

    Get PDF
    This paper describes how specific blood gas analyzer characteristics can support the emerging clinical and organizational user's needs while ensuring patient safety. A oneyear data set from two Italian hospitals was analyzed from 10 different blood gas analyzers. Performance measurements in terms of mean down time (MDT) were calculated to show how technical characteristics declared by the manufacturer compare to the analyzer availability in real clinical settings. Results show a high level of reliability for the analyzed technology, associated with very low MDT of each sensor integrated in the cartridge. Moreover, results show a high level of efficiency in cartridge usage. Such results are consistent with the specification of the GEM® Premier™ maintenance- free technology and are particularly relevant in the point-of-care testing setting.</p

    Prevalence of Klebsiella pneumoniae strains producing carbapenemases and increase of resistance to colistin in an Italian teaching hospital from January 2012 To December 2014

    Get PDF
    The aim of this study was to characterize the spread of carbapenemase-producing Klebsiella pneumoniae (CPKP) in a tertiary level hospital using ongoing active surveillance with rectal swab cultures. Furthermore, this study analyzed the presence of CPKP in the clinical samples (CS) of a single patient as well as the evolution of Colistin-sensitive strains (CoS) to Colistin-resistant strains (CoR)

    Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February-June 2020

    Get PDF

    High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca)

    No full text
    Poplar is a good candidate for phytoremediation purposes because of its rapid growth, extensive root system, and ease of propagation and transformation; however its tolerance to heavy metals has not been fully investigated yet. In the present work, an in vitro model system with shoot cultures was used to investigate the tolerance to high concentrations of zinc (Zn) of a commercial clone (Villafranca) of Populus alba. Based on chlorophyll content (leaf chlorosis) and the rate of adventitious root formation from shoot cuttings as parameters of damage, 0.5-4 mM zinc concentrations were all toxic albeit to different extents. Northern blot and reverse transcriptase (RT)-PCR analyses were used to examine the expression profiles of types 1, 2 and 3 PaMT genes in stems, leaves and roots of plants exposed to Zn treatments. In leaves, MT1 and MT3 mRNA levels were enhanced by Zn, while MT2 transcripts were not affected. The PaMT expression profiles were differentially affected by Zn in an organ-specific manner, and the relationship with Zn concentration and exposure time was rarely linear. The developmental and molecular data reveal that the in vitro model is a sensitive and reliable system to study heavy metal stress responses. © 2006 Elsevier Ltd. All rights reserved
    corecore