11,503 research outputs found

    Aerothermodynamic environment of a Titan aerocapture vehicle

    Get PDF
    The extent of convective and radiative heating for a Titan aerocapture vehicle is investigated. The flow in the shock layer is assumed to be axisymmetric, steady, viscous, and compressible. It is further assumed that the gas is in chemical and local thermodynamic equilibrium and tangent slab approximation is used for the radiative transport. The effect of the slip boundary conditions on the body surface and at the shock wave are included in the analysis of high-altitude entry conditions. The implicit finite difference techniques is used to solve the viscous shock-layer equations for a 45 degree sphere cone at zero angle of attack. Different compositions for the Titan atmosphere are assumed, and results are obtained for the entry conditions specified by the Jet Propulsion Laboratory

    Relativity and EPR Entanglement: Comments

    Get PDF
    Recent experiment by Zhinden et al (Phys. Rev {\bf A} 63 02111, 2001) purports to test compatibility between relativity and quantum mechanics in the classic EPR setting. We argue that relativity has no role in the EPR argument based solely on non-relativistic quantum formalism. It is suggested that this interesting experiment may have significance to address fundamental questions on quantum probability.Comment: 6 pages, no figure; Submitted to Phys. Rev.

    Equivelar and d-Covered Triangulations of Surfaces. I

    Full text link
    We survey basic properties and bounds for qq-equivelar and dd-covered triangulations of closed surfaces. Included in the survey is a list of the known sources for qq-equivelar and dd-covered triangulations. We identify all orientable and non-orientable surfaces MM of Euler characteristic 0>χ(M)≥−2300>\chi(M)\geq -230 which admit non-neighborly qq-equivelar triangulations with equality in the upper bound q≤⌊12(5+49−24χ(M))⌋q\leq\Bigl\lfloor\tfrac{1}{2}(5+\sqrt{49-24\chi (M)})\Bigl\rfloor. These examples give rise to dd-covered triangulations with equality in the upper bound d≤2⌊12(5+49−24χ(M))⌋d\leq2\Bigl\lfloor\tfrac{1}{2}(5+\sqrt{49-24\chi (M)})\Bigl\rfloor. A generalization of Ringel's cyclic 7mod127{\rm mod}12 series of neighborly orientable triangulations to a two-parameter family of cyclic orientable triangulations Rk,nR_{k,n}, k≥0k\geq 0, n≥7+12kn\geq 7+12k, is the main result of this paper. In particular, the two infinite subseries Rk,7+12k+1R_{k,7+12k+1} and Rk,7+12k+2R_{k,7+12k+2}, k≥1k\geq 1, provide non-neighborly examples with equality for the upper bound for qq as well as derived examples with equality for the upper bound for dd.Comment: 21 pages, 4 figure

    Chemoviscosity modeling for thermosetting resins

    Get PDF
    A chemoviscosity model, which describes viscosity rise profiles accurately under various cure cycles, and correlates viscosity data to the changes of physical properties associated with structural transformations of the thermosetting resin system during cure, was established. Work completed on chemoviscosity modeling for thermosetting resins is reported

    Studies on chemoviscosity modeling for thermosetting resins

    Get PDF
    A new analytical model for simulating chemoviscosity of thermosetting resins has been formulated. The model is developed by modifying the well-established Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By introducing a relationship between the glass transition temperature Tg(t) and the degree of cure alpha(t) of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants C sub 1 (t) and C sub 2 (t) were determined from the isothermal cure data. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data. This work represents progress toward establishing a chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformation of the thermosetting resin systems during cure

    Role of MgO impurity on the superconducting properties of MgB2

    Full text link
    We address the effect of MgO impurity on the superconducting properties of MgB2. The synthesis of MgB2 is very crucial because of sensitivity of Mg to oxidation which may lead to MgO as a secondary phase. Rietveld refinement was performed to determine the quantitative volume fraction of MgO in the samples synthesized by two different techniques. Both the samples were subjected to magnetization measurements under dc and ac applied magnetic fields and the observed results were compared as a function of temperature. Paramagnetic Meissner effect has been observed in a sample of MgB2 having more amount of MgO (with Tc = 37.1K) whereas the pure sample MgB2 having minor quantity of MgO shows diamagnetic Meissner effect with Tc = 38.8K. M-H measurements at 10K reveal a slight difference in irreversibility field which is due to MgO impurity along with wide transition observed from ac magnetic susceptibility measurements. The magnetotransport measurements R(T)H using RN = 90%, 50% and 10% criterion on pure sample of MgB2 has been used to determine the upper critical field whereas the sample having large quantity of MgO does not allow these measurements due to its high resistance.Comment: 15 pages text + Fig
    • …
    corecore