7,461 research outputs found

    Radiation induced precursor flow field ahead of a Jovian entry body

    Get PDF
    The change in flow properties ahead of the bow shock of a Jovian entry body, resulting from absorption of radiation from the shock layer, is investigated. Ultraviolet radiation is absorbed by the free stream gases, causing dissociation, ionization, and an increase in enthalpy of flow ahead of the shock wave. As a result of increased fluid enthalpy, the entire flow field in the precursor region is perturbed. The variation in flow properties is determined by employing the small perturbation technique of classical aerodynamics as well as the thin layer approximation for the preheating zone. By employing physically realistic models of radiative transfer, solutions are obtained for velocity, pressure, density, temperature, and enthalpy variations. The results indicate that the precursor flow effects, in general, are greater at higher altitudes. Just ahead of the shock, however, the effects are larger at lower altitudes. Pre-heating of the gas significantly increases the static pressure and temperature ahead of the shock for velocities exceeding 36 km/sec

    Influence of precursor heating on viscous flow around a Jovian entry body

    Get PDF
    The influence of changes in precursor region flow properties (resulting from the absorption of radiation from the shock layer) on the entire shock layer flow phenomena was investigated. The axially symmetric case is considered for both the preheating zone (precursor region) and shock layer. The flow in the shock layer is assumed to be viscous with chemical equilibrium but radiative nonequilibrium. Realistic thermophysical and spectral models are employed, and results are obtained by implicit finite difference and iterative procedures. The results indicate that precursor heating increases the radiative heating of the body by a maximum of 7.5 percent for 116 km entry conditions

    Effects of precursor heating on radiative and chemically reacting viscous flow around a Jovian entry body

    Get PDF
    The influence of change in the precursor region flow properties on the entire shock layer flow phenomena around a Jovian entry body was investigated. The flow in the shock layer was assumed to be steady, axisymmetric, and viscous. Both the chemical equilibrium and the nonequilibrium composition of the shock layer gas were considered. The effects of transitional range behavior were included in the analysis of high altitude entry conditions. Realistic thermophysical and radiation models were used, and results were obtained by employing the implicit finite difference technique in the shock layer and an iterative procedure for the entire shock layer precursor zone. Results obtained for a 45 degree angle hyperboloid blunt body entering Jupiter's atmosphere at zero angle of attack indicates that preheating the gas significantly increases the static pressure and temperature ahead of the shock for entry velocities exceeding 36 km/sec. The nonequilibrium radiative heating rate to the body is found to be significantly higher than the corresponding equilibrium heating. The precursor heating generally increases the radiative and convective heating of a body. That increase is slightly higher for the nonequilibrium conditions

    Significance of shock and body slip conditions on Jovian entry heating

    Get PDF
    The influence of the body and shock slip conditions on the heating of a Jovian entry body is investigated. The flow in the shock layer is considered to be axisymmetric, steady, laminar, viscous, and in chemical equilibrium. Realistic thermophysical and step-function spectral models are employed and results are obtained by implicit finite-difference and iteractive procedures. The freestream conditions correspond to a typical Jovian entry trajectory point. The results indicate that the effect of the slip conditions is significant when the altitudes are higher than 225 km and that the contribution of a radiative heat-flux term in the energy equation should not be neglected at any altitude

    Shunt Excited Broadcasting Antenna

    Get PDF

    Effects of precursor heating on chemical and radiation nonequilibrium viscous flow around a Jovian entry body

    Get PDF
    The influence of precursor heating on viscous chemical nonequilibrium radiating flow around a Jovian entry body is investigated. Results obtained for a 45-degree hyperboloid blunt body entering Jupiter's nominal atmosphere at zero angle of attack indicate that the nonequilibrium radiative heating rate is significantly higher than the corresponding equilibrium heating. The precursor heating, in general, increases the radiative and convective heating to the body, and this increase is slightly higher for the nonequilibrium conditions

    Development of a pyramidal magneto-optical trap for pressure sensing application

    Full text link
    Here, we report the development and working of a compact rubidium (Rb) atom magneto-optical trap (MOT) operated with a hollow pyramidal mirror and a single laser beam. This type of compact MOT is suitable for developing portable atom-optic devices, as it works with less number of optical components as compared to conventional MOT setup. The application of this compact MOT setup for pressure sensing has been demonstrated

    The underpinning factors affecting the classroom air quality, thermal comfort and ventilation in 30 classrooms of primary schools in London

    Get PDF
    The health and academic performance of children are significantly impacted by air quality in classrooms. However, there is a lack of understanding of the relationship between classroom air pollutants and contextual factors such as physical characteristics of the classroom, ventilation and occupancy. We monitored concentrations of particulate matter (PM), CO2 and thermal comfort (relative humidity and temperature) across five schools in London. Results were compared between occupied and unoccupied hours to assess the impact of occupants and their activities, different floor coverings and the locations of the classrooms. In-classroom CO2 concentrations varied between 500 and 1500 ppm during occupancy; average CO2 (955 ± 365 ppm) during occupancy was ∼150% higher than non-occupancy. Average PM10 (23 ± 15 μgm-3), PM2.5 (10 ± 4 μgm-3) and PM1 (6 ± 3 μg m-3) during the occupancy were 230, 125 and 120% higher than non-occupancy. Average RH (29 ± 6%) was below the 40–60% comfort range in all classrooms. Average temperature (24 ± 2 °C) was >23 °C in 60% of classrooms. Reduction in PM10 concentration (50%) by dual ventilation (mechanical + natural) was higher than for PM2.5 (40%) and PM1 (33%) compared with natural ventilation (door + window). PM10 was higher in classrooms with wooden (33 ± 19 μg m-3) and vinyl (25 ± 20 μgm-3) floors compared with carpet (17 ± 12 μgm-3). Air change rate (ACH) and CO2 did not vary appreciably between the different floor levels and types. PM2.5/PM10 was influenced by different occupancy periods; highest value (∼0.87) was during non-occupancy compared with occupancy (∼0.56). Classrooms located on the ground floor had PM2.5/PM10 > 0.5, indicating an outdoor PM2.5 ingress compared with those located on the first and third floors (300 m3) classroom showed ∼33% lower ACH compared with small-volume (100–200 m3). These findings provide guidance for taking appropriate measures to improve classroom air quality
    corecore