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SUMMARY 

The influence of changes in the precursor region flow properties (resulting 

from absorption of the radiation from the shock layer) on the entire shock-layer 

flow phenomena around a Jovian entry body is investigated under physically 

realistic conditions. In the precursor region, the flow is considered to be 

inviscid and the variations in flow properties are determined by employing the 

small perturbation technique as well as the thin-layer approximation. The 

flow in the shock layer is assumed to be steady, axisymmetric, and viscous. 

The analysis is carried out by considering both the chemical equilibrium and 

nonequilibrium composition of the shock-layer gas. The effects of transitional 

range behavior (slip boundary conditions on the body surface and at the shock 

wave) are included in the analysis of high altitude entry conditions. 

Realistic thermo-physical and radiation models are used, and results are 

obtained by employing the implicit finite difference technique in the shock 

layer and an iterative procedure for the entire shock layer-precursor zone. 

Results obtained for a 45O hyperboloid blunt body entering Jupiter's atmosphere 

at zero angle of attack indicate that preheating of the gas significantly 

increases the static pressure and temperature ahead of the shock for entry 

velocities exceeding 36 km/set. The nonequilibrium radiative heating rate 

to the body is found to be significantly higher than the corresponding equi- 

librium heating. The precursor heating, in general, increases the radiative 

and convective heating to the body, and this increase is slightly higher for 

the nonequilibrium conditions. 
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1. INTRODUCTION 

. A space vehicle entering a planetary atmosphere encounters a wide 

range of flow conditions ranging fran free molecular flow at high 

altitudes to continuum flow at low altitudes. Since experimental 

facilities cannot adequately simulate conditions expected during entry 

into the outer planetary atmospheres , most of the required information 

must be obtained from theoretical studies. 

During the high speed entry, the atmospheric friction works as a 

brake to slow the spacecraft and the gas around the body in the formed 

shock layer is heated by the dissipated kinetic energy. Radiation plays 

a very important role in the analysis of flow phenomena around an entry 

body at high speeds. In many instances, the radiative energy trans- 

ferred to the body from the high temperature shock layer gas exceeds the 

convective and aerodynamic heat transfer. Radiative energy transfer 

from the shock layer of a blunt body into the free stream reduces the 

total enthalpy of the shock layer while increasing the enthalpy of the 

free stream gases. Because of this increase in enthalpy, the entire flow 

field ahead of the shock layer and around the body is influenced signi- 

ficantly. The phenomena of change in flow properties ahead of the 

shock wave due to the energy interaction fran the shock layer is called 

the "praecursor" or "praecurrere" (prae = before + currere = run) which 

means "forerunner." In the present context, therefore, the precursor 

flow region is considered to be the region ahead of a shock wave in 

which the flow field parameters have been changed from free stream condi- 

tions due to absorption of radiation from the incandescent shock layer. 

Most of the radiative energy transferred from the shock layer into the 

6 



cold region ahead of the shock is lost to infinity unless it is equal to 

or greater than the energy required for dissociation of the cold gas. 

When the photon energy is greater than the dissociation energy, it is 

strongly absorbed by the cold gas in the ultraviolet continuum range. 

The absorbed energy dissociates and ionizes the gas and this results in 

a change of flow properties in the precursor region. In particular, the 

temperature and pressure of the gas is increased while velocity is 

decreased. The change in flow properties of the precursor region, in 

turn, influences the flow characteristics within the shock layer itself. 

The problem, therefore, beccmes a coupled one and iterative methods are 

required for its solution. 

Only a limited number of analyses on radiation induced precursor 

flow is available in the literature. Works available until 1968 are 

discussed, in detail, by Smith [1,23*. By employing the linearized 

theory of aerodynamics, Smith investigated the flow in the precursor 

region of a reentry body in the earth's atmosphere. The cases of plane, 

spherical, and aylindrical point sources were considered end solutions 

were obtained for a range of altitudes and free stream conditions. It 

was found that for velocities exceeding 18 km/set, precursor flow effects 

are greatest at altitudes between 30 and 46 km. It was further concluded 

that preheating of air may cause an order of magnitude increase in the 

static pressure and temperature ahead of the shock wave for velocities 

exceeding 15 km/set. A few other works, related to the effects of up- 

stream absorption by air on the shock layer radiation, are discussed by 

Liu [3,4]. Some works on precursor ionization for air as well as 

hydrogen-helium atmosphere are presented in 15-91. 

* The numbers in brackets indicate references. 



In the analysis of most shock-layer flow phenomena, the contribution 

of radiation-induced precursor effects usually is neglected. Garrett IlO] 

presented a detailed review of the various methods used for solving the 

radiating flow field at the stagnation region. Also, various methods of 

solution of ra,&ating shock layer are discussed by Anderson Ill]. 

Sutton [12] separated the radiating flow field into an outer inviscid 

layer and an inner boundary layer1 the two solutions are coupled by 

radiative transport through both layers and by the .boundary displace- 

ment thickness. Kumar, Tiwari, and Graves [13] considered the entire 

shock layer as viscous flow region and used a time-dependent method to 

obtain the solutions for small angle of attack. Davis 1141 presented a 

method for solving the viscous shock-layer equations for stagnation and 

down stream flow. Moss 115-171 applied this method of solution to 

reacting multicamponent mixtures. The precursor effects were neglected 

in all the above studies. However, a limited number of studies which 

include this effect are available in the literature. Lasher and 

Wilson [18,19] investigated the level of precursor absorption and its 

resultant effect on surface radiation heating for earth's entry condi- 

tions. They concluded that, for velocities less than 18 km/set, pre- 

cursor heating effects are relatively unimportant in determining the 

radiative flux reaching the surface. At velocities greater than 

18 lan/sec, the amount of energy loss fran the shock layer and resultant 

precursor heating correction was found to be significantly large. 

Liu [3,4] also investigated the influence of upstream absorption by 

cold airon the stagnation region shock layer radiation. The thin layer 

approximation was applied to both the shock layer and the preheating 

zone [the precursor region). The problem was formulated for inviscid 

8 
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flow over smooth blunt bodies but the detailed calculations were carried 

out only for the stagnation region. The general results were compared 

with results of two approximate formulations. The first approximate 

formulation neglects the upstream influence and the second one essen- 

tially uses the iterative procedure described by Lasher and Wilson 

C18,191. The results are compared for different values of a radiation/ 

convection parameter. 

As mentioned earlier, the cold gas absorbs energy only by photodis- 

sociation and photoionization in the precursor region. The absorption 

coefficients are a continuous nonzero function of photon energy (because 

of bound-free transition) for all values of photon energy exceeding the 

dissociation potential of the molecule. A critical review of ultra- 

violet photoabsorption cross sections for molecules of astrophysical and 

aeroriomical interest, available in the literature up to 1971, are given 

by Hudson 1201. Specific information on photoionization and absorption 

coefficients of molecular hydrogen is available in 120,211. 

In the shock layer region, the gas may be treated as gray or non- 

9-w. Anderson 1111 concluded that a gray gas analysis is not suffic- 

iently accurate for entry applications and suggested use of nongray 

models. The frequency dependence of the absorption of coefficient for' 

a nongray gas may be treated either in detail or by a "step model." 

There exists several ccanputer programs for the detailed frequency 

dependence of the absorption coefficient which are developed by Nicolet 

[22], Wilson [23], and Thomas [241. In a step model, the frequency 

dependence is broken into a number of discrete steps. Falanga and 

Olstad 1251 presented a 38-step model for 90% CO2 and 10% N 2 (by 

9 
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volume) m&ure which included 15 steps to model the continuum and 23 

steps to model the line.contribution to the radiation transport. zoby, 

Sutton, and Moss 1261 developed a 58-step model for hydrogen and helium 

mixture. The transitions considered in this model are: the bound-bound, 

bound-free and free-free transitions for atomic hydrogen, the bound-free 

and free-free tra&itions for the negative hydrogen ion, and the Lyman. 

and Werner band systems for molecular hydrogen. This 58-step.model is 

fairly accurate and compares very well with the results of Nicolet's 

detailed model for hydrogen/helium species (271. 

me total radiative transport is an integral over both the fre- 

quency spectrum and the physical space. The methods for calculating the 

divergence of the radiative flux and other conservation eguations are 

available in [28-301. 

It is very well documented ir'the literature that the degree of 

rarefraction of a flow is measured by the Reynolds number. Therefore, 

for a fired blunt body at low altitudes where the Reynolds number is 

high, the flow will behave like an ordinary viscous flow which lies 

within the scope of the Navier-Stokes equations. At higher altitudes, 

where the Reynolds number is low, the theory of free molecular flow can 

be used. The transition zone between these two regions has been divided 

into several 'subregions which are discussed in greater detail by Hayes 

and Probstein [31], and Cheng [32] has provided the different methods of 

solution valid within each region. In the continuum range, the flow 

phenomena is investigated through use of the Navier-Stokes equations. 

In the transition range (from the continuum end), however, use of the 

Navier-Stokes equations is still justified for the main flow field,but 

the boundary conditions cannot be satisfied in the usual manner. Thus, 

10 
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the characteristic feature of flow of a slightly rarefied gas, which 

sharply distinguishes it frcun the continuum flow, is the change in the 

boundary conditions at the body surface 1331 and shock wave;/ @4-351. 

Instead of using the Rankine-Hugoniot conditions as boundary conditi.ons 

at the shock wave, Probstein and Pan 134,351 introduced the concept of 

“shock wave slip" as interpretation of the transported effects behind 

the shock. Rott and Lenard [361 have shown that the effects of velocity 

slip and temperature jrnnp on the body surface cannot be neglected in 

comparison with other low Reynolds number corrections. A semi-macro- 

scopic argument which leads to the simple expression for velocity slip 

and temperature jump is given in [33,361. 

From the literature survey, it is quite clear that no work is avail- 

able which considers the influence-of precursor heating on the shock 

layer flow phenanena around a Jovian entry body. A few studies that are 

available deal only with the case of chemical equilibrium in the shock 

layer; the case of shock iayer chemical nonequilibrium flow has not been 
L'. !: 

considered. Also, no$cdnsideration has been given to investigate the 
.Y. . .:. 

transitional range sho;k layer flow phenomena encountered at high Jovian 

entry altitudes. In an actual entry situation, the influence of pre- 

‘cursor heating, nonequilibrium chemistry in the shock layer, and transi- 

tional range flow phenomena may be strongly coupled. Thus, it is 

essential to investigate the extent of influence of each phenomena 

separately and jointly in order to assess the true behavior of flow 

around the entry body. This information is of vital importance in 

determining the convective and radiative heating of the entry body. 

The main purpose of this study, therefore, is to investigate the 

influence of changes in the precursor region flow properties on the 

11 



entire shock layer flow phenanena around a Jovian entry body. The cases 

of shock layer chemical equilibrium as well as chemical nonequilibrium 

are considered, and the effects of transitional range behavior are 

included in the analyses of high altitude entry conditions. In order 

to accomplish these objectives‘in a systematic manner, the entire problem 

has been divided into four subproblems as: 

1. Investigation of the radiation induced precursor region flow 

phenomena. 

2. Effects of shock and body slip conditions on viscous equilibrium 

flow. 

3. Influence of precursor heating on viscous equilibrium flow. 

4. Influence of precursor heating on viscous nonequilibrium flow. 

Basic formulation of the entire problem is presented in Chap. 2. 

The boundary conditions for different flow regimes are given in Chap. 3. 

Information on thermodynamic and transport properties for each species 

considered in different flow regimes are,given in Chap. 4. Information 

on chemical reactions and reaction rates for both equilibrium and non- 

equilibrium conditions are given in Chap. 6. Discussions on radiation 

models and radiative flux equations are presented in Chap. 6. Solution 

procedures for the precursor and shock layer regions are discussed, in 

some detail, in Chap. 7. Discussions of all results are presented in 

Chap. 8. 

12 
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2. BASIC FOIMULATION 

The physical model and coordinate system for a Jovian entry body is 

shown in Fig. 1. The entire flow field ahead of the body can be divided 

essentially into three regions: the free stream, the precursor region, 

and the shock layer. The flow properties are considered-to be uniform 

at large distances from the body; In this section, governing equations 

are presented for the precursor as well as shock layer region. However, 

it would be appropriatehere to discuss first the Jovian atmospheric and 

entry conditions. 

2.1 Free-Stream Region 

Information on Jupiter's atmospheric conditions are available in 

[37-391. In the past, the naainal composition of the atmosphere was 

assumed to be 85 percent hydrogen and 15 percent helium by mole fraction. 

Recently, this has been changed to 89 percent hydrogen and 11 percent 

helix [39]. For different altitudes of entry, the free-stream condi- 

tions used in this study are given in Tables 1 and 2. The temperature 

of the atmosphere (i.e., T-1 is taken to be constant at 145 K and the 

free-stream enthalpy can be calculated by following the procedure given 

in [1,21 as 

H = 1.527 R T QD m (2.1) 

where R = 8.315 Joules/K-mole is the universal gas constant. The 

number density of hydrogen can be calculated by the ideal gas law and 

the relation can be expressed as 

N 
H2 

= (7.2431172 x lo**) CPoD/To)X 
H2 

(2.2) 

where X 
H2 

is the mole fraction of H2 and POD has the units of N/m*. 
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Table 2 Free-stream and shock conditions for Jovian entry. 

Free stream v,, Wsec Ts, K q (0) , erg/cm* 

Z = 95, km 38 16,610 1.35 El2 

p, = 1.29 E-3, kg/m3 35 15,400 7.75 Ell 

P = 673, N/m 32' 14,080 3.52 El1 

30 13,550 2.01 Ell 

Z = 103 40 16,890 1.16 El1 

pm = 8.56 E-4 35 15,040 4.70 El1 

P = 448 33 3.28 El1 a0 14,250 

30 12,810 1.142 Ell 

z = 116 45 18,227 1.09 El2 

PC0 = 4.65 E-4 39.09 15,886 4.76 El1 

PC0 = 244 35 14,480 2.18 El1 

30 12,480 4.87 El0 

Z = 131 43.21 16,390 3.86 El1 

PC0 = 2.32 E-4 38 15,210 1.61 El1 

P = 122 35 8.72 El0 m 13,880 

30 12,030 1.90 El0 

Z = 150 42 15,050 9.60 El0 

pa. = 9.29 E-5 40 14,520 6.96 El0 

PC0 = 49 35 13,140 2.57 El0 

30 11,600 6.20 E9 
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2.2 Precursor Region 

In this region, the flow is considered to be steady and inviscid. 

To investigate the changes in flow properties in this region, both the 

small perturbation theory of classical aerodynamics and the thin-layer 

approximation of hypersonic flow have been used in this study. Funda- 

mental principles of these approximations are briefly discussed in the 

following subsections. 

2.2.1 Small.Perturbation Theory 

For application of the small perturbation theory, basic conserva- 

tion equations for the precursor region can be written as 140,411 

Mass Continuity: 

v l CpV) = 0 (2.3) 

Momentum: 

P 6 l VT, = 'VP (2.4) 

Energy : 

p (: l VHT) = Q, (2.5) 

Species Continuity: 

p(? - VC,) = Ka (2.6) 

State: 

p i pRTh cCa/Wa) (2.7) 

where the total enthalpy per unit mass is given by 

HT = H + V*/2 

In the above equations, QR = V*qR is the net rate of radiant energy 

absorbed per unit volume per unit time, Kc represents the net rate of 

production of species a per unit volume per unit time, and wa is the 

mole+ar weight of species a. 
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As a result of increased fluid enthalpy, the entire flow field.in 

the precursor region is perturbed. By following the small perturbation 

technique of classical aerodynamics, the flow properties CM be expressed 

in perturbation series as [1,2, 40-431 

P = p, Q+ 1+ 2 +...I (2.8a) 

P =P oD (1 + P1 + P2 + . ..I (2.8b) 

V =vm (k +V1+V2 + . ..I (2.8~) 

H= H,+ Vi(H1 + H2 + . ..? (2.8d) 

T = T, + T1 + T2 + . . . (2.8e) 

ca= caoD + Cal + ca2 + . . . (2.8f) 

in these equations, all the perturbation variables Cexcept temperature) 

are expressed in nondimensional form. The unit vector k represents the 

direction of unperturbed free-stream velocity. 

If Q, and K a can be considered as first-order perturbation terms, 

then substitution of Eqs. (2.8)'into Eqs. (2.3)-(2.7) results in the 

first-order perturbation equations as 

where 

Continuity: 

v l V1 + apl/az = 0 

Momentum: 

aV,/az = - (l/y+ vp 

Energy : 

aHT /a2 
1 

= Q,/(P, V:) 

Species: 

ac /a2 
a1 

= Ka/ (P, V,) 

H 
T1 

=H1+V 12 

and y represents the ratio of specific heats. 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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The boundary conditions are that perturbation quantities vanish at 

z + 0~ and that no singularities exist except at the origin. 

The radiation effect on'the'gas ahead of the shock produces Hl, H, 

and electrons e by photodissociation and photoionization, and also 

increases the enthalpy. Any other species which may be produced are 

neglected. The contribution of radiation to the gas pressure is neglected. 

It is further assumed that the internal degrees of freedan of various 

species (i.e., vibrational and elecyonic modes) are not exited. For 

this gas model, the equation of state (for the first order perturbation) 

can be expressed as 11,21 

p1 = (400/180.17) NC, + CH l/21 + (T1/T) + p1 (2.14) 
2+ . 

By following the procedure described by Smith [1,21, the first-order 

perturbation relation for enthalpy is found to be 

H1 = (l/V;) Il.=? RT1 + [(5/4)RT, + 1/2]CH 
2+ 

+ [(3/4)RT- + DICH) (2.15) 

where I and D represent the ionization and dissociation energy res- 

pectively. It should be pointed out here that D in the above equation 

actually represents half the energy required for dissociation. 

As pointed out earlier, the upstream gas absorbs the energy radiated 

from the shock layer in the ultraviolet continuum range. The radiation 

from the perturbed gas due to recanbination (i.e., emission1 is neglected. 

The amount of radiative energy absorbed by the perturbed gas per unit 

volume and time, Q R' is given by 

QR =N 
H2 

&- Hv a(u)dv (2.16) 
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where N 
H2 

is the number density of H2, Hv is specific irradiance and 

U(V) is the photon absorption cross section of H2 at frequency v. 

In determining the rate of production of species in the precursor 

region, only photodissociation and photoionization are considered.. 

Recanbination is 

neglected in the 

tion of species, 

K 
H = ml NH2 

assumed to be a second order effect and, therefore, is 

present linearized treatment. The net rate of prcduc- 

therefore, is given by [l, 281 

1; CHJhv) aD tvv)dv (2.17a) 

= ml NH Im(Hv/hv) aI(v)dv 
2 O 

(2.17b) 

where m 1 represents the weight of an H 2 molecule (in grams per molecule), 

and uD(vl and u,(v) are the absorption cross section for photodissocia- 

tion and photoionization, respectively. 

2.2.2 Thin Layer Approximation 

The concept of thin shock layer theory (usually applied to hyper- 

sonic shock layer flows [31]1 is also applied to investigate the precur- 

sor effects. The curvilinear orthogonal coordinate system, shown in 

Fig. 1 is selected and the differential equations for a-hypersonic plane 

or axisymmetric flow can be written in the present coordinate system as 

1421 

ca/as) Cpur') + (a/an) (pvXr’) = 0 (2.18) 

p [U (au/as) + (xvcau/an) - KUV] + tap/as) = 0 (2.19) 

p [Ucav/as) + xv(av/an) + mu*] + x Cap/an) = 0 (2.20) 

P [ (u/x) (awad + v tawan)l + d) 
-1 

[ (a/ad dqR) 1 = 0 (2.21) 

pr (u/x) (aca/a.5) + v(aca/an) - ~~ = 0 (2.22) 

where K = K(S) = l/Rs, X -1 + Kn, and j = 0, for plane flows and 1 for 

axisynnnetric flows. It should be noted that, according to the notations 
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wed in Fig. 1, all quantities appearing in the above equations should 

have a prime superscript (i.e., u',. v', p', H',. etc.), and all physical 

coordinates should have a superscript * (i.e., s*, n*, r*, etc.). How- 

ever, for the sake of clarity, these notations have been anitted frcm the 

equations. 

If the precursor region is assumed thin, then one can make the 

approximations that (.n/Rs)<<l, a/as<< a/an, and r j is not a function of 

n. In this case X = 1, and Eqs. (2.18)-(2.22) reduce to simpler forms 

as 1421 

(a/an> (PV) = 0 (2.23) 

pvcau/an> = 0 (2.241 

pvcav/anl + tap/an) = 0 (2.25) 

pvcaH/ad + (as/an) - 0 (2.26) 

pv(aca/an) - sea - 0 (2.27) 

The similarity between these equations and the small perturbation 

Eqs. U.9)-(2.12) should be noted. 

In present application to the hydrogen-helium atmosphere, Eq. (2.27) 

3111 be written for htanic hydrogen and hydrogen ions. In Eq. (2.261, H 

represents the total enthalpy and is given by the relation 

R-H T = h + (II* + v*)/2 

where 

(2.28) 

h" - 1.527 RT + [(S/4) RT + 1/2]C + + [(3/4)RT + D]CH 
H2 

(2.29) 

Note that Eq. (2.29) is slightly different than the relation for per- 

turbation enthalpy given by Eq. (2.151. 

21 



2.3 Shock-Layer Region 

In this region, the flow conditions for which the present al'dysis 

is carried out are axisymmetric, steady, laminar, viscous, and compress- 

ible. It is further assumed that the gas is in local thermodynamic 

equilibrium and the tangent slab approximation is valid for radiative 

transport. The reacting multicanponent gas mixture is treated in both 

chemical equilibrium and nonequilibrium conditions. 

2.3.1 Chemical Equilibrium 

The viscous shock layer conservation equations presented in [14-171 

are 'a set of equations that are valid uniformly throughout the shock- 

layer region. The methods of obtaining these equations are discussed 

in detail in those references. First the conservation equations are 

written for both the inviscid and the boundary-layer regions in the body- 

oriented coordinate system. Then these equations are nondimensionalized 

in each of the two flow regions with variables which are of oraer one. 

Terms in the resulting sets of equations are retained up to second order 

in the inverse square root of Reynolds number. Upon combining these two 

sets of equations, so that terms up to second order in both regions are 

retained, a set of equations uniformly valid to second order in the 

entire shock layer is obtained. The nondimensional form of the viscous 

shock-layer equations that are applicable in the present case can be 

written as 

Continuity: 

(a/ax) [(r+y COS 8)PUl f way) [(l+yK) (r+y X COS .e)pV]=o (2.30) 

X-momentum: 

UK 
1 + yK 1 

22 
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Y-manen tum : 

U 
p(1 + yIc ax 

av+vavL?L+ 
ay > a-0 

I+Y ay (2.32) 

Energy : 
aH aH 
ax+Vay > 

N aci Ns 
$2" hi-- 

i=l ay 
c 
i=l 

hi Ji + k (Pr-1)u g 

pKU* 
.l+yu 1 ( K 

+m+ 
cos 8 

r+ycose Pr;iF-or )[ 
u aH 

N 
- cs 

i=l 
hi Ji + $ (Pr-1)u $ - & ) - 1 + yIc 1 c e 

where 

(2.33) 

H- h + u*/2. 

The terms used to nondimensionbze the above equations are defined as 

x = x*/R* n v = v*/vz Pr = C;" l /K* 

y = y*/R;: P = P*/Pz Le.. = 
=I 

p *C;“; j/K* 

r = r*/R* n lJ = u*/lJ;ef L = ij p l C;Dtj/K* 

K- K*/(u C* ) ref pa C 
P 

= c*/c* 
P Pm P = Pf/(PFZ2) 

u ref = i*(V**/C* ) T m Pa 
= T*Cp,/Vz2 

h = ,*,z* 

Ji in = J*R*/v* ref 

K = K*/R;: u = u*/vz 

E’ uGef/ (pzV$R;) 1 1’2 (2.34) 
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In 4. (2.33), Ji represents the mass flux relative to the mass 

average velocity and is given by the expression [14,44] 

(ayaw + (L:/T] (aTjaY) 1 (2.35a) 

where 

ifK 

NI C. NI 
Lei=C ($)E 

j=l j j=l 
'Cj/MjLij) 

jfl j#l 

NI 
AbiK = Lei - (M/M) uiK + [l-cMi/MK)l Z Le..C. 

j=l 13 3 

The last term in 4. (2.35a) represents the contribution of thermal 

diffusion. The quantity 'Le.. 
13 

represents the multi-component Lewis 

number, and L.. 
11 

represents the binary Uwis Semenov numbersr,both are 

defined in Eq. (2.34). If thermal diffision can be neglected and L.. can 
13 

be taken as constant for all species, then Eq. (2.35a) reduces to 

Ji = - (u/Pr)Lij (acpy) (2.35b) 

In the present study, use is made of Eq. (2.35231, and the value for 

Lij is taken to be 1.1 [45,46]. 

The expression for the equation of state for a hydrogen/helium 

mixture is given by Zoby et al [471 as 

T* a CT[(p*/1013250)~/b*/0.001292~Kl 

H* a cH[(p*/1013250)m/(p/0.0012!32]n] (RIO/M) 

where 

(2.36a) 

(2.3633) 

K= 0.65206 = 0.04407 Iln (Xm 1 
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E - 0.67389 - 6.04637 Iln(XR ) 
* 

m - 0.95252 - 0.1447 IlnOtH ; 
2 

n - 0.97556 - 0.16149 En(X 1 
H2 

Ut - Vom sin 8 [l + 0.7476(1-X 
H2 

11 

CTU-- 545.37 +61.608 ut - 22459 u; + 6.039922 ug 

- 0.00035148 Ut + 0.0000012361 U: 

CBU - 5.6611 - 0.52661 U; + 0.020376 Ut - 0.00037861 UE 

+ 0.0000034265 U: - 0.000000012206 UE 

CT - CTU + 61.2 (l-XH ) 
2 

CH - CHU - 0.3167U-X 
H2 

) 

and EIX 
2 

represents the mole fraction of H2. 

The set of governing equations presented above has a hyperbolic/ 

parabolic nature. The hyperbolic nature enters through the normal 

momentum equation. If the shock layer is assumed to be thin, then the 

normalmanentum equation can be expressed as 

PU*K/ (1 + YU) - tap&) (2.37) 

If l3q. (2.321 is reelaced with 4. (2.371, then the resulting set of 

equations is parabolic. These equations can, therefore, be solved by 

using 

layer 

2.3.2 

numerical procedures similar to those used in solving boundary- 

problems 114,151. 

Chemical Nonequilibrium 

For the condition of chemical nonequilibrim, the basic governing 

equations- (continuity, X-manentum, Y-maaentum, and energy) are essen- 

tially the same as given for the chemical equilibrium condition. The 
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spscios~cmtinuity equation, however,. is needed and this is gi-k h' 

th8.rklation 

C* 2 t U + ntc) (r + n co8 e)jJil (2.38) 

(i + nbi) (r + n co8 8) j an 

wher6 8i~represents the rate of production ,of chemical sped8 in the 

shock layer. The equation of state given by 4. (2.36) is valid only 

for the chemical equilibrium case. For the case of chemical nonequi- 

librium, the equation of state is given by the relation 1281 \- 

P+v* - C (N ) R*T+ 
i i 

(2.39) 

where Ni is the nuder of moles for the i-th species. This result is 

reminiscent of the thermal equation of state for a perfect gas. The suu 

in parentheses, however, is not a constant since the total number of 

moles change as the chemical balanc& changes. 
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3. BOUNDARY CONDITIONS 

As pointed 'out earlier, the slip boundary conditions are not 1 1 

important at low altitudes but they cannot be neglected at higher 

altitudes. since both the slip and no-slip conditions have been used 

in this study, they will be discussed separately in this chapter. 

3.1 No-Slip boundary Conditions 

At the body surface (Wall), no velocity slip and no temperature 
I : 

jump are assumed. Consequently, the velocities at the surface are 

v=o (3.1.) 

u=O j3.2) 
; 

The wall temperature for this study is specified as 

TW = constant (3.3) 

The Rankine-Hugoniot relations are used to determine the flow 

properties imnediately behind the shock. The nondimensional fom'of .. 
I 

the shock relations can be written as [451 

Continuity: 

ps,vs- = -sina (3.41 

Manentum: 

+ = sina 

P s- = p,+ + sin2a(l-l/ps-1 

Energy: 

hS- = hs+ + (sin2a/2) (l-l/p:,) 

(3.5) 

(3.61 

(3.7) 

where a is shown in Fig. 1, and uh and vi are velocity components 

expressed in a shock-oriented coordinate system. The relations for 

U andv S S in the body-oriented coordinate system can be written as 

u =u' S S sin Ca + B) + vi cos (a + 8) (3.8) 

27 



v z-u’ 
S S cos (a + 8) + v; sinta + 8) 

where angle $ is indicated in Fig. 1. 

3.2 Slip Boundary Conditions 

(3.9) 

Shidlovsky [33] has shown that at the body surface the velocity 

slip and temperature jump conditions are of the same order as the Knudsen 

number. The Knudsen number, Kn, is defined as the ratio of the particle's 

mean free path 11 and the characteristic dimension L of the body (i.e., 

Kn = 11/L). The ordinary boundary conditions (which correspond to 

continuum conditions) are obtained when Kn + 0. However, for the 

transitional range ti.e., for Kn + O(l)), in order to be consistent 

with the Navier-Stokes equations of motion, a linear relation between 

the conditions at the wall and the flow should be assumed. This can be 

done by a semi-macroscopic argument which leads to the simple expression 

for velocity slip and temperature jump as 148-511 

U=E~A 1 WP) (P/PI1'2 (au/ay) (3.10) 

T = Tw + ~~ A2 (K/P (P/P?'~ (away) (3.11) 

v=o (3.12) 

where Al and A2 are constants and are given by 

Al = [U-al)/all (i~/2?'~, A2 = (15/8)[(2-a2)/021 (~/2?'~ 

The terms u1 and a2 are slip and thermal accommodation coefficients 

respectively and are dependent on the nature of the surface and fluid. 

However, in actual flight conditions both al and a2 are expected to be 1. 

Since the transport and thickness effects are important at higher 

altitudes, the conditions imposed at the shock cannot be calculated by 

using the classical Pankine-Hugoniot relations. Probstein and Pan 1341 

have shown that the thickness effect is of a higher order in u and, 
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therefore, ,it is neglected in the present study. The information on 

thickness effect can be found in '(52,531. In the present case, the 

shock may still be considered "thin" when compared to the thickness of 

the viscous shock layer. As such, the thin-layer approximation 

Ca/ax@)<c(a/ay@) and y'/Rs<<l can be used in the shock transition zone. 

The notations x' and y' are used for the shock surface curvilinear 

orthogonal coordinates in Fig. 1. By using Stokes assumption and applying 

the hypersonic thin layer approximation, the governing equations for 

the shock transition zone can be expressed as 1541 

Continuity: 

PEq = PiVs* (3.131 

x'-manentum: 
2 

p* + pz~z~; - c4/3)u* av;/ay* = P;V~ + pz 

y'-momentum: 

PCiU - lJ* au*/ay* = p*v*v* oacooo 

Energy : 

pzVzH* - b*/Pr) a/ayIH-(i-Pr)u*2/2 - 

[1-(4/3)Prl~*~/2) = p*V*H* -mm 

(3.14) 

(3.15) 

(3.16) 

where H* = h* + (Use + ~*~)/2. 

At the down stream edge of the transition zone both v and (4/3) 

[uCav/ay)] are reduced to high-order quantities under a high shock can- 

pression ration. Therefore, a set of modified transport boundary condi- 

tions immediately behind the shock can be written as 

cx = p*v* (3.171 
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p*v*~*~-qau*/ay)~ = ~22: ODaD (3.18) 

P;+PFzv; = p;+ p;vt2 (3.19) 

~2: (H~*-H:)={ (p,/pr) a/ayf Di*-(l-Pr)u;2/21.1 C3,20) 

By introducing v =I v sin a, u - G cos a and nondimensionalizing 

all the quantities, the final modified Rankine-Hugoniot conditions are 

obtairied as I . ' 

pSvs: f sin a 

"J = cos a - k2 p,/sin a) (ayap) 

-PS = p, + sin2 a U-l/ps) 

hs = hm - k2 p, Pr sin a) (ah/ap) + 

W2) Eu' S. - cos a)? + sin2 a - vu2 
S 

U = u’ S S sin(a + 8) + v; cos. (a + B) 

V S = v; sin(a + 8) - v; cos (a. + 8) 

(3.21) 

(3.22) 

(3.23) 

(3.29) 

(3..25) 

,(3.X) 

As mentioned before, use of slip boundary conditions are made in .,,: 

investigating the shock layer flow phenanena at relatively high entry 

altitudes. 
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4. THERMODYNAMIC AND TRANSPORT PROPERTIES 

Thexmcdynamic properties for specific heat, enthalpy, and frae 

enorgy,- and transport properties for viscosity and thermal conductivity 

arm required for each species considered in different flow regimes. For 

the precursor zone as well as shock layer, the general expression for 

tots1 snthslpy, specific enthalpy, and specific'heat at constant pres- 

sure ari given respectively by 

% - h + (u2 + v2)/2 

h * CCfhi 

cP - ICiCPi 

(4.1) 

(4.21 

(4.3) 

Hmever, specific relations for H and Cp for the two regions are quite 

different. 

For the precursar region, the relation for the specific enthalpy is 

obtained by following the procedure described by Smith [l] as 

h" - 1.4575RT + (0.75RT + D)CH + (1.25RT + 1/2)C 
Hs 

(4.4) 

where D and I represent the dissociation and ionization energy respsc- 

tively, and their values are available in [551. The derivation of 

Pg. (4.4) essentially follows from the consideration of 4. (4.2). If 

it is assumed that the internal energy of each particle can be described 

only .by.translational and rotational modes, then the relation for specific 

snthalpy of each species can be expressed as 

h He - + RT + p/p - 5 RT (4.5) 

h 3 2 --RT+- 
H2 2 

2 RT + P/P = f RT (4.6) 

RT + p/p + I = ; RT +I (4.7) 
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hH=fRT+p/ .+.D 
5' 

- F,RT + D (4.8) 

Also, from the conservation of charged particles one can write 

(4.10) 

Now, for 85 percent.H2 and 15 percent He on volume basis (or 76 percent 

H2 and 24 percent He on mass basis), 4. (4.21 is written as 

(CdM,)h, = (0.26/4) URT/2) + ((0.74 - C 
H3 

- CH)/21 (7RT/2) + 

[(5RT/2 +D)lCH + (7RT/2 + I) ('3, /2) 
Hs 

+ (5RT/2)(C /2) 
Hs 

(4.11) 

A simplification of the above equation results in Eq. (4.4). 

In the shock layer region, 4s. (4.2) and (4.3) are used to 

calculate H and C P' With xi representing the mole fraction of the ith 

species, the expressions for hi and Cpi are found from Refs. 56 and 57 

as 

Hi = RT[al + (a2/2)T + (a3/3)T2 + (a4/4)T3 + 

(a5/5)T4 = a6/Tl (4.12) 

C Pi = R(al+ a2T'+ a3T2 + a4T3 + a5T4) 

where R is the universal gas constant (-1.98726 cdl/mole - K) and T 

is the local fluid temperature,in K. For different species, values of 

the constants al, a2, . . . a6 are given in 1571, and for species under 

present investigation they are listed in Table 3. It should be pointed 

out here that in this study, instead of employing Eq. (2.36b), Eqs. (4.1), 

(4.2), and (4.12) are used to calculate the enthalpy variation in the 

shock layer. This is because slightly better results are obtained by 

using the above set of equations. 
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For the shock-layer gas, the mixture viscosity and thermal con- 

ductivity are obtained by using the semi-empirical formulas of Wilke [581 

as 

N 
v=c [Xilli/ t: x.4. .)I (4.14) 

i-l jzl ' " 

N 
K-C hiKi, t: x.4. .)I 

i=l jx1 J ‘J 
(4.15) 

where 

4 ij = 11 + f.lli/Pj)1'2 cE.lj/Mi) 1'412/E&?[1 + (Mi/Mj)l)1'2 

and Ml is the molecular weight of species i. For hydrogen/helium 

species, specific relations for viscosity and thermal conductivity are 

given in 159,601. The viscosity of H2 and He, as a function of tempera- 

ture, can be obtained from reference [591 as 

= (0.66 X 10e6) (T)3'2/(T + 70d5), N sec/m2 (4.16) 

'He = (1.55 X 10B6) (T)3'2/ (T + 97..8), N sec/m2 (4.17) 

The thermal conductivity of H2 and H are obtained from Ref. 60 as 

KH2 
= 3.212 x 10 -5 + (5.344 x 10-3)T (4.18) 

K H = 2.496 x lO-5 + (5.129 x 10-8)T (4.19) 

The viscosity of H and thermal conductivity of He are obtained from the 

relation between viscosity and thermal conductivity of monatomic gases 

as given in Ref. 58 by 

K= (15/4) (R/M)u (4.20) 

Very little information is available on transport properties of other 

species such as Hi, H+, e-, etc. Fortunately, transport properties are 
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important only in the boundary-layer region where the temperature is not 

high enough to produce these species. 

It should be noted that all relations presented in this section 

are expressed in dimensional form. 

The heat transfer to the wall due to conduction and diffusion is 

referred here as the convective he,at flux and is given by the relation 

E15,461 as 

/ 

N 

9C’ = -c2[K(aT/ay) + (v Le Pr) I 
I=1 

(acim)hii (4.211 

where Pr is the Prandtl number, Ls is Lewis number and-the value for Le 

is taken to be 1.1 [45,46] in the present study. 
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5. CBEMICAL REACTIONS 

Analyses of chemically reacting flows are usually simplified by 

assauning the chemical equilibrium behavior of the gas mixture. While 

this assumption may be justified in some cases, in many realistic prob- 

1-s this may lead to serious errors. Thus, in order to understand the 

degree of physical reality, it becomes essential to analyze the complex 

gas mixture under the conditions of chemical nonequilibrium. In this 

chapter, information on chemical equilibrium and nonequilibrium reactions 

and reaction rates are provided for the shock layer gas mixture of a 

Jovian entry body. 

5.1 Chemical Equilibrium 

In the chemical equilibrium case, a computer code developed by 

Sutton (261 is used in this study. The number density of eight chemical 

species, H 2, H, H+ , H-, e', Hef He+ and Hg+ are calculated by the chemi- 

cal reactions and rate constants given in Table 4. In general, the 

reactions can be expressed by 

C aiAi $ Z b.B. (5.1) 11 
The number density of particles (particle/m31 is related to the 

equilibrium rate constant and can be expressed as 1281 

K. = (5.2) 
3 

[INbi(Bi)l/[flNai(Ai)l 

The conversion equations for hydrogen and helium nuclei and 

charge are 

NH + 2NH2 + NH+ + NH- = N; 

0 N He + NHe+ + N He++ + NHe 

(5.3) 

(5.4) 

NH+ + NHe+ + 2NHe++ - NH- = Ne- (5.5) 
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Table 4 Reaction scheme and rate constants for 
chemical equilibrium conditions. 

RATS CCMETMES PhRTscLEs/n~ 

? - 4.699E22 T 
l/7 (l-exp t-6331/~) clcp (-51964/T) 

2. alp+ l a- k2 - 2.4llElS T1-5 l -f-157610/T) 

3. n8pJD++ a- k3 
- 9.64SElS Tla5 l xpt-285287/T) 

4. II *Em * - +o k4 - 2.411El5 T 1.5 
l ++ expf-631310/T) 

1. I=l!l + a- % - 9.643El5 Tla5 sxp(-9750/T) 

Table 5 Reaction scheme and rate constants for 
chemical nonequilibrium conditions. 

PAte constants in atI3 -1 -1 see mole 

kl-2.27E13 T.l" sxp(-1S7EES/Te) 

2. lio+.y!h++z. k2-1.33El3 Tel/' cq((-2.852ES/Te) 

3. II l 0 = El*++ 0, 
E-*e=lI +?a k3= 4.llE13 Te l/Z exp(~1.160ES/Te) 

4. lh l l = se,+ l , 
a.* + l = aa = 2* k4' 2.24313 T, l/2 l xpt-2.320E5/Te) 

s. II l II = II’++ I, 
IIe+lI=II +a+!l k54.20ElO T"' exp(-1.16OE5/T) 

6. I l lh 2 II*++ Ho, 
W+lW=Il +e+ne k6-4.69ElO T1" exp(-l.l60ES/T) 

7. lf2+13a~n+r+Iia k7-4.33E18 T-l [1-e%p(-15E8/T2) 1 

expt-52340/T) 

0. u2+E2~n+n+H 2 kg=2.5 k7 

9. m2+u~s+n+tl kg-14.0 k, 

10. m2+a+yl+R+d k10-k9 

ll. uz+*pI+H+e~ k 
lllk9 
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The number densities of the hydrogen and helium nuclei are calcu- 

lated by 

NO H = 2x 
H2 

cAoP/Mo) (5.6) 

NO He = xHe cAoP/Mo) (5.7) 

where 

M = 2.016x 0 H2 
+ 4.003x He 

In the above equations, A0 represents Avugadro's constant, p is the 

mixture density in g/cm', xH is the mole fraction of molecular hydrogen, 
2 

and K He is the mole fraction of helium. 

The solution procedure for obtaining the eight unknown number 

densities is discussed in [263. The closed-form solutions are obtained 

by solving Eq. (5.21 for each reaction independently. This is accab 

plished by setting the appropriate values in Eqs. (5.3):(5.5) equal to 

zero if the species are not present in the reaction. The closed-form 

solutions for the number densities (in particles/cm31 of each species 

are given by 

H: N 2 H2 
= (N221 + (N1/8)[1 + 8N"d~,)"' - 11 

+ H: N+= H @C2/2) [(l + 4N>2)1'2 - 11 

H: NH = No H - 2N 
H2 

- NH+ 

) [(l + 4K3N;e/D:)1'2 - 11, D1 - K3 + NH+ 

) [(l + 4K4N;e/D;)1'2 - 11, D2 = K4 + NH + Nie 

+ H: N+= e He (D/2 

++ ++ He : N He = cD2/2 

He: N =NEe- He 

e': N e' = NH+ + 

N He + NH$+ 

NH; + 2NH$+ 

H-: N H- = NHNe,/K 5 (5.8) 
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5.2 Chemical Noneguilibrium 

When chemical reactions proceed.at a finite rate, knowledge of the 

rate of production terms, Q., l. which appear in the species continuity 

equations, are required. The reaction scheme describing important 

collisional processes in hydrogen-helium ionizing shock waves has been 

modeled by Leibowitz [8] after the results of argon ionization studies. 

Eleven separate reaction steps describe the dissociation of molecular 

Wdrog=, excitation of electronic states of hydrogen and helium, and 

ionization of the atauic hydrogen and helium by collisions with atcms 

and electrons. A complete discussion on these reaction schemes is avail- 

able in 1611 and [62]. The eleven reactions and corresponding rate con- 

stants are given in Table 5. 

In a ccmplex gas mixture containing a total of R species, of which 

Xi are capable of undergoing m elementary chemical reactions, the chemi- 

cal equation for the general elementary reaction r can be written as 

WI 

a 11 
C ai r Xi = C bi r Xi 
i=l ' i=l ' (5.9) 

where a i,r andb i,r are the stochiometric coefficients appearing on 

the left and right in the reaction r. By applying the principle of 

detailed balancing, the backward rate constant, Kb 
,r' 

is obtained by 

dividing the forward rate constant, Kf r, by the equilibrium constant 
I 

K 
c,r 

which is given in Table 1. 

The total rate of change in Xi is given by the relation [28] 

dXi- m 11 II 

r= fS1 (bi,r-ai,r)Kf,r i=l [II (XiJai,r - + 2=,(Xilbi,r] (5.10) 
c,r 
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This is the general.rate equation for a complex gas mixture. The rate 

of 'production of chemical species, fii, now can be expressed by 

1 i = M;(dx;/dt) (R;/pzz) (5.11) 

Equations (S.Q)-(5.111, along with other fluid mechanical equations, 

equation of state, and the electron energy equation, are solved numeric- 

ally to obtain the concentration of all species. In order to have a 

reasonable rate of convergence in the numerical scheme, however, it is 

important to express the rate of production term in a proper form. This 

is accomplished by splitting tii into two separate contributions as 

[15,63,64] 

Q/P = (ty - + i (5.12) 

The reasons for doing this are explained in the cited references. 

5.2.1 Electron Temperature 

Because of a large ratio of atom (or ion) mass to electron mass, 

electrons transfer energy rapidly by collisions with other electrons-but 

only slowly by elastic collisions with atoms or ions. Consequently, a 

different temperature is given to atarts (heavy particles) and electrons 

in the same gas. The electron temperature is obtained fran the solution 

of the electron energy equation. A detailed discussion of the electron 

energy equation is given by Appleton and Bray [65]. For a one-dimensional 

steady shock wave in a H2-He mixture, the resulting equation can be 

expressed as 1611 

(5.13) 

V ek = Nk 'e *ek (5.14a) 
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V e - (8 k Te/nm ,"2 e (5.14b) 

Q ek = \[exp(-akE)-exp(-bkE) 1 

E - (l/2) V2 

V = 4 (kTe/2aU) l/2 

(5.14c) 

(5.14d) 

(5.14e) 

lo = M+lb/(Ma+Mb) , 

v=Cv 
k ekbk 

In Eq. (5.131, [e] represents the concentration of electrons, ek is 

the ionization energy per mole of species k, and Ri and Ri, are the 

forward and backward production rates for electrons respectively. In 

Eq. (5.14b1, vek represents the collisional frequency, nk is the number 

density of species K, Ve is the average electron velocity, and Qek 

represents the elastic collision cross section for species k. In Eq. 

(5.14e), E represents the relative kinetic energy, V is the relative 

speed, and P is the reduced mass. The values of coefficients Ak' ak' 

and bk appearing in Eq. (5.14d) are available in Ref. 59. By substituting 

Eqs. (5.10) and (5.14) into Eq. (5.131, an explicity expression for the 

electron temperature, in terms of the species concentration and heavy 

particle temperature, can be obtained as 

T,=T - [ (kl+k3) '%-X4& Hj+(k2+k4) (X3-X5/Kc,He)]/X1 I 
(5.15) 

wnere k 1, k2, k3r k4 are rate constants in Table 5 and 

x1 = 1/(3[elme;R) 

x2 = OHWl[el 

(5.16a) 

(5.16b) 

x3 = OHe[Hel [el (5.16~) 

x4 = QHIH+l [h (5.16d) 

!5.16e) 
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Use of the electron temperature is made in evaluating the radiative 

flux in the shock layer. 
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6. RADIATION MODEL 

An appropriate expression for the radiative flux, qB, is needed for 

the solution of the energy equation presented in the second chapter, 

This requires a suitable transport model and a meaningful spectral model 

fog variation of the absorption coefficient of the gas. In this chapter, 

appropriate expressions for the spectral and total radiative flux are 

given and information on the spectral absorption by the hydrogen/helium 

ga8 is presented. 

6.1 Radiative Flux Equation 

The equations for radiative transport, in general, are integral 

equations which involve integration over both frequency spectrum and 

physical coordinates. In many physically realistic problems, the com- 

plexity of the three-dimensiaal radiative transfer can be reduced by 

introduction of the "tangent slab approximation." This approximation 

treat8 the gas layer as a one-dimensional slab in calculation of the 

radiative transport. Radiation in directions other than normal to either 

the body or shock is neglected. Discussions on the validity of this 

approximation for planetary entry conditions are given in [66-701. 

As mentioned earlier, the tangent slab approximation for radiative 

transfer is used in this study. It should be pointed out here that the 

tangent slab approximation is used only for the radiative transport and 

not for other flow variables. For a nonscattering medium and diffuse 

nonreflecting bounding surfaces, a one-dimensional expression for the 

spectral radiative flux is given by 127-291 

%(=,,) = 2a {Ev[Bv(0)E3(~v) - By('o,,)E3(~oV - r",)] + 

5 T 
1 Bv(t)E21(~,, - t)dt - IoVBv(t)E2(t - Tv)dt} 

I" 0 T V 
(6.1) 
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where 

~3 1’ UJ (y’1.d~’ 
0 

En(t) = 11exp(-t/u9un-2du 
0 

BV = (hv3/c2) [exp(hv/ICT) -11 

The quantities Bv(0) and BV(~Ov 1 represent the radiosities of the body 

surface and shock respectively. 

The expression of total radiative flux is given by 
m 

= / 
qR 0 

qBv(rv)dv (6.2) 

To obtain specific relations for the total radiative flux for the pre- 

cursor and shock-layer regions, it is essential to know the spectral 

absorption characteristics of the absorbing-emitting species in thirse 

regions. 

In the precursor region, the radiative contribution from the free 

stream usually is neglected. For a diffuse, nonreflectlng shock front, 

the expression for one-dimensional radiative flux for this region is 

obtained from Eqs. (6.1) and (6.2) as 

qR (n) = 2 i= ~qv(0)E3(kvn) + 
0 

511~~ Jo) Bv (T) E2 [K~ (n-n' ) ] dri’ )dv (6.3) 
0 

where q (0) = E~~B~(T& In obtaining the above equation, it was 

assumed that the absorption coefficient K v is independent of position. 

The information on the spectral absorption model for hydrcgen/ 

helium species in the precursor region is given.in 1421 and is briefly 

discussed in subsection 6.2. The model essentially consists of 
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approximating the actual absorption of active species by three differ- 

ent step models. For this model, Cq. (6.3) can be expressed as [43) 

N 
qR (n) 

v2i = 27~ c 1 (15/iT5)q(0)E3 (Kin) / [v3/ (eV - l)]dv 
i=l vii 

'2i 
+K i In E2[Kih - n’)l I Bv(T)dvdn') (6.4) 

0 'li 

where V = hv/kTs and q(0) = EuT;. In writing the above equation, it has 

been assumed that the shock front radiates in the precursor zone as a 

gray MY. 

In the shock layer, the radiative energy from the bow shock usually 

is neglected in comparison to the energy absorbed and emitted by the gas 

layer. This implies that the transparent shock front does not absorb but 

emits radiation. The expression for the net radiative flux in the shock 

layer, therefore, is given by 

m T 
= 2 / 

qR 0 
[qv(0)E3(Tv) + /' Bv(t)E2(Tv - t)dt 

0 

Bv(t)E2 (t - r")dt]dv (6.5a) 
T V 

In this equation, the first two terms on the right represent the radia- 

tive energy transfer towards the bow shock while the third term repre- 

sents the energy transfer towards the body. Upon denoting these contribu- 

tions by qi and s,, Eq. (6.5a) can be written as 

(6.5I.9 

A few spectral models for absorption by the hydrogen/helium species 

in the shock layer have been proposed in the literature 122-261. For. 

Jovian entry conditions, the absorption by helium is usually neglected. 
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The spectral absorption of hydrogen species was represented by a 58-step 

model by Sutton 1261 and was approximated by a 30-step model by Tiwari 

and Subramanian [271. The results of these step models are compared with 

the detailed model of Nicolet [22] in [27]. The 58-step model proposed 

by Sutton is employed in this study. The details of radiative absorption 

and computational procedure are given in [26]. The information on spec- 

tral absorption by this model is summarized in subsection 6.2. In 

essence, the step model replaces the frequency integration in Eq. (6.5) 

by a summation over 58 different frequency intervals. In each interval, 

the'absorption coefficient is taken to be independent of frequency. For 

this model, Eq. (6.5) can be expressed as 

N 

9R = 2~ c 
j=l 

{E~B~(T~)E~I 
0 

lYcv(yl)dyl] 

Y Y 
+ 1 av(S)Bv(5)E2[ / a,(y')dy'ldE 

0 5 

5 
- ? cv(S)Bv(SlE2[ / av(y')dy']dc] 

Y Y 

where y, denotes the shock location and N represents the number of 

spectral intervals. In each of the jth intervals, the absorption co- 

efficient is assumed constant while the Planck function is not. In 

accordance with Rq. (6.5b), Eq. (6.6) can be expressed in terms of qi 

and q- and R for a gray body one finds 

+ 
qg (yl 

N 
= (4xh/c2) z 

j=l 
vj (y’)dy’l 

Y Y 
+ I- W/hJ4 F(vj,T]avj~(5)E2[ I-avj(yW)dyf]d~] 

0 5 
(6.7a) 
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N 5 
q;;(Y) 31 - (4nh/c2)C ( ?s(kT/h)4 F(vj,T)avjE2[ / avj(yl) 

w Y Y 

x dy’ldE1 

where 

F (vj rTw) = ~j2Cv3/[exp(hv/KT ) W - l]}dv 
'jl 

P(vj,T) = Yj21V3/ Cexp (v) - 11 )dv, v = hv/kT 
'jl 

(S.7b) 

From the knowledge of the temperature distribution normal to the 

body, Egs. (6.7) can be solved by numerical integration over frequency 

and space. The final temperature profile is obtained through an itera- 

tive procedure. Use of Eqs. (6.7) is made in obtaining the radiative 

flux towards the body and shock as well as the net radiative flux. 

For evaluation of the radiative flux, usually it is essential to 

express the exponential integrals En(t) in simpler approximate forms. 

Quite often, these integrals are approximated by appropriate exponential 

functions [28,291. In this study, it was established that better results 

are obtained if the exponential integrals are expressed in series form 

for small and large arguments. The series expansion of the exponential 

integral of first order is given as 

For t < 1: 

El(t) = - 0.5772 t2 t3 -!Lnt+t--+-+... Z(2)! 3(3)! (6.8a) 

For t 2 1: 
2+a 3 

El(t) = exp(-tl aO + alt + a2t 3t + t4 t(b 
0 

+ b 
It + b2t 

z 
+ b3t 5 + tql 

(6.8b) 
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where 

aO 
= 0.26777343 b. = 3.958469228 

al = 8.63476089 bl = 21.09965309 

a2 = 18.059016?73 b2 = 25.63295614 

a3 = 8.57322874 b3 = 9.5733223454 

Relations for exponential integrals of higher order are obtained by 

employing the recursion relations given in 1291. 

6.2 Radiation Absorption Model 

Appropriate spectral models for gaseous absorption are needed for 

solutions of the radiative flux equations. Information on spectral 

absorption by the precursor and shock-layer species is presented in this 

section. 

6.2.1 Spectral Absorption Model for Precursor Region 

In the precursor region, the photoionization absorption coefficient 

is a continuous 'nonzero function of photon 'energy (because of bound-free 

transition] for all values of photon energy that exceed the ionization 

potential of the atom. Similar remarks apply to the photodissociation 

and radiative recombination. A critical review of ultraviolet photo- 

absorption cross sections for molecules of astrophysical and aeronomic 

interest, available in the literature up to 1971, is given by Hudson [20]. 

Specific information on photoionization and absorption coefficient of 

molecular hydrogen is available in [20,21, 71-741. 

Photoionization and absorption cross sections of Ha, as obtained 

from Refs. 20, 21, and 71-74, are plotted in Fig. 2. From this figure, 

it is evident that the ionization continuum starts at about 804 A and 

continues towards lower wavelengths. Between the wavelengths of 600 i 
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and 804 i,,the absorption cross section for the ionization continuum is 

included in the total absorption (i.e.,, absorption due to ionization as 

.well as dissociation). For wavelengths below 600 i, however, the ionisa- 

tion continuum absorption is equal to the total absorption. The total 

absorption cross section for the continuum range below 804 i can be 

closely approximated by the two rectangles (I and II) shown in the 

figure with broken lines. The ratio of the ionization cross section to 

the total absorption cross.section (i.e., the value of Y,) is taken to bs 

unity for rectangle I and 0.875 for rectangle II. For wavelengths greater 

than 804 i (where h is below ionization energy), the value of yI is taken 

to be zero. Little information is available in the literature on the 

absorption cross section for dissociation of H2 molecules. There is 

strong evidence, however, that photodissociation starts at about 2600 i 

and continues towards lower wavelengths to about 750 i 169,711. There 

are also a few diffuse bands in this spectral range 171,731. Thus, it 

becomes difficult to evaluate the absorption cross section in this spec- 

tral range. For this study, the absorption cross section in the spectral 

range between 804 i and 2600 i was approximated by rectangle III. The 

specific values of u(v) for the three rectangles are found to be 

u,(v) = 4.1 E-18, (5 II (v) = a.2 E-18, and UIIIW = 2.1 E-18. The value 

of YD is taken to be zero for rectangle I and 0.125 for rectangle II. 

The numerical procedure for employing this model in the radiative flux 

equations is discussed in detail in Ref. 42 and is summarized in Chap. 7. 

6.2.2 Spectral Absorption Model for Shock-Layer Region 

As mentioned earlier, the SE-step model proposed by Sutton [26] for 

spectral absorption by the hydrogen species in the shock layer is employed 
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in this study. For atomic hydrogen, all three transitions (bound&ound, . 

bound-free, and free-free) are considered. The total absorption of the 

jth step is a sutmation of the average absorption for the ith transi- 

tions in'the jth step, i.e., 

Kj (6.9al 

.Kij - WAvj) ;j+Avj KidV (6. ib) 

2 

/i 
- f(T,N p) (6.9cl 

-3 where Ni represents the number density in cm . 

For the free-free transition, the absorption coefficient is cal- 

culated by 

H 
Kff = (2.61E - 35)NeNH+/ (v3T l/2 ) (6.101 

The absorption coefficient for bound-free transitions is calculated 

by employing two separate relations as 
H 

Kbf 
- (1.99E - 14) (NH/u3) 1 (l/n~)exp(Cl), llnQL4 (6.11a) 

n =l 11 

H 
Kbf - (6.31E - 20) m~$V~)exp(C~)exp(C~), 5 1. ngnE max 

I (6.11b) 

where 

c1 - (-157780/T) I1 - (l/n:)] 

c2 - (-157780/T)(l - 6/13/6) 

c3 = [(157780/T) (l/25 - 6/13/61] - 1 

6 *.(1.79E - 5) (Nz'7)/(T1'7) 

In the above equations, nII represents the principal quantum numbers, 6 

is the reduction in ionization potential in ev, and the values 157780 

and 13.6 are the ionization potential in K and eV respectively. 
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The bound-bound transitions are included for principal quantum 

numbers up to five. The absorption coefficient is calculated by using 

the relation 

H 
'bb = SL(v) (6.12) 

where S is the line strength and L(v) is the line shape factor. The 

iine strength is given by the relation 

S = (l.lOE - 16)fniN, expI(-157780/T) (1 - l/n~Il 

The line shape factor is given by the relation 

(6.13) 

L(v) = y/Cdy2 + (v - uo123 1 (6.14) 

where v 0 
is the frequency at the line center and y is the line half- 

width, and these are given by 

w. = l3..6[(l/ni) - (l/n:)1 (6.15) 

Y = a[l.O5E 15(n2 - ni)Ne z/3, (6.16) 
U 

The constant a in the above equation is taken to be 0.642 for the first 

line and 

The 

tions of 

H- 
Kff 

H- 
Kbf 

unity for the remaining lines. 

absorption coefficients for the free-free and bound-free transi- 

the negative hydrogen are 

= (6.02~ - 39)NHNe/v3 (6.17) 

= (2.893 - 17) (B4 - 4B3 + 3.64B2 + 0.73B)NH, (6.181 

where 6 = 1.502/v. The threshold for the bound-free transition of H' 

is 0.757 eV. 

The absorption coefficient for molecular hydrogen in the jth step 

is obtained in accordance with Eq. (6.9) and is expressed as 

EH2 
j 

= fj (T)NH2 (6.19) 

where fj(T) is dependent on the particular step. The molecular bands 

cover the steps from 7 to 17 eV. 

52 



-her details on constructing the step-function model and utilizL 

ing it in th& radiative flux equations are given in Refs. 25-27. 
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7. SOLUTION PROCEDURE 

An iterative procedure has been used to couple the precursor and 

shock-layer solutions. In this method, the shock-layer solutions are 

obtained first with no consideration of precursor effect. From this 

solution, the radiative flux at the shock front (which influences the 

precursor region flow) is determined. By employing this value of the 

radiative flux, different precursor region variables are calculated 

through use of Eqs. (2.18) through (2.25). Values of these flow variables 

are obtained just ahead of the bow shock, and then the Rankine-Hugoniot 

relations are used to determine the conditions behind the shock. These 

conditions are used to obtain new shock-layer solutions from which a new 

value of the radiative flux at the shock is calculated. The procedure 

is continued until the radiative flux at the shock becomes invariant. 

The solution procedures for the precursor and shock-layer regions 

are described in some detail in following subsections. 

7.1 Precursor Region Solution 

As pointed out earlier, two methods (the small perturbation theory 

and the thin-layer approximation) are employed in this study to investi- 

gate the precursor region flow phenomena. The solution procedure for 

these methods is discussed separately in this section. 

7.1.1 Small Perturbation Theory 

Since the problem treated by thin layer method is linear, it is 

permissible to obtain a solution for arbitrary frequency, and then 

integrate this solution over the spectrum to obtain the general solu- 

tion. Thus, in the development that follows, flow-field perturbations 

will be considered for a unit frequency interval. Consequently, Eqs. 

(2.111 and (2.12) now can be written as 
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. . 

ac /a2 = Im, NH 
H2+ 2 

yI u(v)/(P; V, WIHv C7.2al 

acdaz = [ml NH YD u(v)/(P~ VaD hv)lHy C7.2bl 
2 

where Y D and YI represent photodissociation and photoionization yields 

respectively. 

It can be shown that the flow under consideration is irrotational 

[1,2]. Thus, there exists a potential @I such that 

v 1 = 04 

For z-direction, integration of Eq. (2.8) results in 

p1 = -(YMi) a$/aZ = -(YM;)Vlz 

(7.31 

(7.4) 

Eq. (2.9) can now be expressed as 

v2+ + apl/az = 0 (7.5) 

In order to evaluate apl/az and to relate Hl to other variables, it is 

necessary to consider the gas model and radiation, For the precursor 

region gas model, the expressions for pressure and enthalpy variations 

are given by Eqs. (2.14) and (2.15) respectively. Now, in order to ex- 

press the governing equations in terms of perturbation potential, first 

pl is eliminated by combining Eqs. (2.14) and (7.4). The resulting 

equation is then differentiated with respect to z and use is made of 

Eq. (7.2). Next, Eqs. (2.15), (2.16), (7.11, and (7.3) are combined to 

give 

apl/az = -r a2$/az2 - py Hi (7.61 

where 

r = 0.727 y M2 (7.7a) Q) 

Pv = a\, + bv/hv (7.7b) 
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a =N 
v 

H2 
u(v)/(P,,, V, H-1 (7.8a) 

bv f -(avm1/2)f (I - 0.89 RT,,,)YI + (2D - 1.89 RT,) YD] (7.8b) 

Upon combining 4s. (7.5) and (7.61, the governing equation for the flow 

is obtained as 

2 y+ - r aQ/az2 = py TV C7.9) 
, 

For the axisymmetric case, this is expressed as 

r-l alar (ra@/ar) - r aQ/az2 = pv A" (7.10) 

4s. (7.9) and (7.10) are seen to be the classical potential equa- 

tions for compressible flow with a forcing term proportional to radiation 

added. The potential for the flow induced by a radiant source with a 

spectral distribution is obtained by integrating the contributions of 

each frequency as 

0 I; 4 dv = (7.11) 

AS discussed by Smith [1,21 , solutions of the governing equations, 

presented in the previous section, can be obtained in special cases 

depending on the model used for the distribution of spatial radiation. 

If the radius of the radiating gas cap, Rc, is large compared to the 

photon mean free path, then the problem can be treated like radiation 

from a plane source. On the other hand, when the radius of the radia- 

ting gas cap is small, then the problem can be treated like a spherical 

point source for radiation from the gas cap and a cylindrical point 

source for radiation from the wake. Note that, in general, Rc may not 

be the same as the radius of the bow shock, Rs. 

7.1.1.1 Radiation From a Plane Source. For radiation from a plane 

source, it is essential to integrate the Hv contribution over the plane, 



as attenuated by passage through the absorbing medium. The relation for 

H"* in this case, is given by 1281 

Hv f 2qv(O) E2(-KvZ) (7.12) 

where qv(O) is the spectral radiative flux density at the shock wave, 

K ~ is the spectral absorption coefficient, and En(t) is the exponential 

integral of order n. The expression for kv(which may also bs interpreted 

as inverse of the photon mean free path) is given by 

K =N V H2 
o(v) C7.13) 

In this form K~ represents the absorption coefficient of H2 molecules. 

If the number density NH (and hence, 
2 

~~1 can be taken to be independent 

of z (which is a good approximation for small ionization and dissocia- 

tion), then the optical depth is defined by 

5 = KyZ (7.14) 

For the plane radiating source (where V2 
X-Y 

4 = 01, therefore, a combina- 

tion of 4s. (7.91, (7.12), and (7.14) results in a simpler expression, 

the integration of which results in 1421 

4 - -[2 Pv qy(0)/(T+E4(-5) (7.151 

where the boundary condition of (a$/a<)+O as C- has been used. 

From 4. (7.X), the velocity perturbations, ahead of the shock 

front, can now be written as V lx = %y - O,and 

viz = -12 Pv q,tO)/trKv)iE3t-c) i7.16) 

Frcrm 4. (7.41, the expression for pressure perturb&ion is found to be 

p1 = 12 y P,, qy(o)/KvlE3(-S) (7.17) 

where it was assumed that CM*/T)=l; Similarly, the expressions for 

density perturbation, total enthalpy, static enthalpy, and species 

concentration are found to be 12,421 
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% = 12 py q,(o)/(~Kv)lE3c-F) C7.18) 

% 
- t2 q,(O)/(p., V~~lEg(-F~ 

A 

H1=2qu (0) I N/(P, Vz) 1 + P,/(kJ Eg (-C) 

C 
H2+ 

= [2 w' 
H2 

ml/(pm V, hv)lYY(v) q,,tO)E3(4 

(7.19) 

(7.20) 

(7.2laI 

(7.21b) 

my employing Eqs. (7.17), (7.18), and (7.21), F&q. (2.5) is solved for 

the temperature variation. For this case now, all flow properties at 

any point upstream of the shock can be determined. 

7..1.1.2 Radiation Fra Spherical and Cylindrical Point Sources. The 

physical model for radiation from spherical and cylindrical point sources 

is shown in Fig. 3. A spherical point source is a source which radiates 

equally in all directions. A cylindrical point source is a source which 

radiates as a cylinder of infinitesimal radius and length. For both 

cases, the incident radiation at any field point s is given by [1,2] 

5 = (A,/s2) exp(-Kvs)(sin 0)j (7.22) 

In this equation, Av represents the radiative strength of the source, 

s is the distance from the source and e is the angle between the free 

stream velocity vector and a line from the field point to the center of 

the source. The superscript j is equal to zero for a spherical point 

source and one for a cylindrical point source. 

Eq. (7.22) can be substituted in Eqs. (7.9)-(7.10) to obtain the 

corresponding equations for the perturbation potential. Within the'con- 

fines of the assumptions made in obtaining Eq. (7.22), however, both 

problems (spherical as well as cylindrical point source) can be con- 

sidered to be axisymmetric. The governing equation for the perturbation 

potential, therefore, can be written as 
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where 

p=KS, l’l=Kr, A=I\(V]=K P A V V 4’=Kv’b v v v 
A procedure' for'general solution of this equation is suggested by 

Smith (11. For entry flow, however, M?>l and Eq. (7.231 can be solved 

by expanding 4 in a series in (l/r) in the vicinity of the body. Thus, 

one can express as 

4' = -(K/r) [Fj (<,n) + (l/r).Fj(') (WI) + (l/r) FjC2) C&-II 

+ . . .I (7.24) 

where F. 's are function for perturbation.potential. Substitution of 
3 

this relation into Eq. (7.23) gives 

a2Fj/as2 = F2 exp(-PI (sin (3)' 

and 

(7.25) 

a+,(“)/a$ = -0-l a/an (17 aF, (“-l)/ad (7.26) 
3 

The problem, therefore, is reduced to quadratures in the vicinity of the 

body. In the present analysis, only the terms in (l/I') will be retained. 

By integrating ?Sq. (7.25) twice, the expression for Fj is obtained as 

Fj (5,n) = /- 11,' - 50)dSo C7.27) 
-0D 

2 where p. = n2 + C2. For convenience, let us denote 

Gj tC,rl) = aFj/ar = r5 LI-~ exp(-yo) WuO)' dS 0 SOD 
U.28a) 

Hj (5rn) = aFj/an = /’ V-~ expl-u,)C (n/1.11’ rrl + 
-0D 

(I-I/?J~) (2 + jI1 - j )tC - C,)d5, (7.28b) 

With these definitions of F., G., and H., 
3 3 3 

the perturbation quantities 

can be expressed as 12,421 
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+’ * -(A/‘)F, (S,n) (7.29) 

Vlr = tnmHpl~ ci 20) 

vls * -wr)Gjhl~ (7.31) 

p1 - yAGj(F,rl) (7.32) 

Pl - (A/r)Gjk,n) (7.33) 

H 
T1 

= (Kv A/P, Vz)Gj (F,n) (7.34). 

cH - (ml Av K~/P- V, hv)YD(vl G, (F,rl) (7.35a) 

C 
H2+ = (ml A,, K~/P,. V,,, hvlYi(v) Gj (F,T(.) (7.35b) 

Note that for the case of spherically radiating point source j - 1 in 

the above equations. Also, these equations are obtained for arbitrary 

frequency. The expression for total potential, for this case, can be 

obtained by combining Egs. (7.11) and (7.24) as 

Cp - -(l/I') ? [A(v)/rv]Fj&,n)dv (7.36) 
0 

Furthermore, it should be noted that the above solutions are valid in 

the region where [u -2 exp(-VI (sin 81'1 does not vanish, This is the 

case of spherically symmetric flow ahead of the entry body and is of 

primary concern in the present study. 

pint source are discussed in [1,21. 

The procedure for expressing the 

the photoabsorption model employed in 

detail, in 1421. 

7.1.2 Thin Layer Approximation 

Other cases involving cylindrical 

perturbation equations in terms of 

the.precursor region is given, in 

A direct integration of Eqs. (2.23) through (2.27) results in the 

following governing equations for the precursor region 
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PV = P, voD (7.37) 

P; v, (II - UJ = 0 (7.38) 

P, voo (v - VJ + @ - p,) = 0 (7.39) 

PaI v, 03 - HOD) + qB = 0 (7.40) 

P, voD<ac(L/an) - K~ = 0 (7.41) 

where it has been assumed that qB= = 0. 

In Eq. (7.40), H represents the total enthalpy and is given by a 

combination of Eqs. (4.1) and (4.4). The expression for the radiative 

flu, qR' is given by Eq. (6.41. For the present application, Eq. (7.41) 

will be written for atQnic hydrogen and hydrogen 

the procedure outlined in [1,42] the expressions 

tion are found to be 
N 

cH =2B4C YD 
i=l i 

E3('Ci] (kTs]%vi) 

N 
C =+ 

H2+ 
-2B4C YI 

i=l i 
E3ki) (kTs)-%v:) 

ions. By following 

for species concentra- 

(7.42) 

(7.43) 

where 

B4 
= (15h41 19 (Oh,/ (P~VJ 1 

v2i I($ = z {v2/[exp(v) - l])dv 

vii 

and ml represents the weight of the H2 molecule in grams per molecule. 

Note that there are nine algebraic equations to evaluate the nine 

unknowns p, v, u, p, h, H, C H' 'H2+- 
The solutions of this set of 

algebraic equations are obtained by using the Gauss-Seidel method [74]. 

The properties at the infinity are used as the first initial guess in 

the Gauss-Seidel method. The iteration is continued until all the 

quantities in this region become invariant. The flow chart of the 

computational procedure is illustrated in Figs. 4 and 5. 
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Fig. 4 Flow chart for combined precursor/shock-layer solution 
procedure. 
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V 

I SOL’VE EQep (7.37) FOR 
I 
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I SOLVE EQ. (7.40) FOR 
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Fig. 5 Flow chart for subroutine PERC used in the preqrsor region 
solution procedure. 
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7.2 Shock-Layer Region 

A numerical procedure for solving the viscous shock-layer equations 

for stagnation and downstream regions is given by Davis 1141. Moss 

applied this method of solution to reacting multicomponent mixtures in 

[15,171. A modified form of this procedure is used in this study to 

obtain solutions of the viscous shock-layer equations. In this method, 

a transformation is applied to the viscous shock-layer equations in order 

to simplify the numerical computations. In this transformation most of 

the variables are normalized with their local shock values. The trans- 

formed variables are [15] 

n = Y/Ys p= P/P, r = l-As 

5 "X P = P/P, z = K/KS 

Yi = u/u S F= T/Ts F 
P 

= c /c 
P Ps 

; = v/v S 'iT= H/H S 
The transformations relating the differential quantities are 

(7.44) 

&I-~$ 
a 

S 
Ws/dE) 5 ( 1 

and 

(7.45) 

$0 a2 =$~o,--- ()=l&) 
S aY2 Y: ao2 

(7.46, 

The transformed equations can be expressed in a general form as 

a2w/an2 + alaw/aO + a2W + a3 + a4aw/ac = 0 (7.471 

The quantity W represents u in the X-momentum equation, T' in the tempera- 

ture energy equation, i in the enthalpy energy equation, and Ci in the 

species continuity equations. In most cases, the coefficients al to a4 

to be used in this study are exactly the same as given in 1151. However, 
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there is one exception. Since radiation is included in the present 

study, the coefficients of the energy equation are different fra thoee 

used in [15]. For exa@le, in the enthalpy energy equation, coeffic- 

ients a 1 , a2, and a4 are the same as given in WI, but a3 is different, 

and this is given by 

1 12x+( K 
Y, an 1 + ypV + 

+ yspr%vsv a& ys'rpr ,s 

E2VsiiH an - 
[Lag" 

S E21pSi Y, as 

+q( K R 1 + YSTjK + 
cos 8 

r+y cos eJ1 S 
(7.48) 

where 

P& K;Iu2 
1 + Ys TIK 

Other transformed equations are the same as given in [lSl. 

The surface boundary conditions in terms of transformed variables 

are 

i; = 0, 5 = 0, z = " 

The transformed shock conditions are found to be 
- 0 
u=v =?( =;;,;;,,-,l 

(7.49) 

(7.50) 

at n = 1. 

The second order partial differential equations as expressed by 

Q. (7.471, along with the surface boundary and shock conditions, are 
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I 

solved by auploying an implicit finite-difference method. In order to 

obtain numerical solutions for the downstream region, it is necessary 

to have au accurate stagnation streamline solution. Since the shock 

shape is affected by the downstream flow, a truncated series of shock 

standoff distance is used to develop the stagnation streamline equations. 

As such, the shock standoff distance is expressed by 

Y. = yls + Yzs E2 + "' (7.51) 

Since 6 is small and the curvature K is approximately one in the 

stagnation region, it is logical to say that (see Fig. 1) 

B=S (7.52) 

Since 8 - (x/2) -6, there is obtained 

a = 8 + tan-l[(ans/agl/(l + ~~~11 

- (v/2) + m2yzs/(l + Yls)3 - 11 (7.53) 

By using Eqs. (7.51) to (7.531, the shock relations [Eqs. (3.4)-(3.911 

can be expressed.in terms of expanded variables as 

's*- = l/P r, v S S- = l/P S- (7.541 

u;- = -Ft2Y2,/(1 + Yls) -11 (7.55) 

u - = EC1 - [2Yzs/U - Yls)l (1 + l/QII s (7.56) 

Ps- = P,+ + U'- l/Ps-1 + =?I (1 - l/ps-I 

l t1 - 2Y2J(1 + YlsI121 (7.571 

hs- - hs+ + (1 - l/ps-I/2 $7.58) 

In 4s. (7.54) through (7.581, only Ps and us involve y2 in the 
S 

first terms of their expansion. Thus, a series expansion for the flow 
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variables is assumed about the axis of synunetry with respect to non- 

dimensional distance 5 near the stagnation streamline as 

p(5,ro = P1 (Tl) + P,hW + --- 

u(~,rll = Ill b-l75 + --- 

v(S,n) = v(n) + --- 

P (E,n) = P1 (n) + --- 

T(~,IJ) = T1 (0) + --- 

1-I (S,n) = Ill (rl) + --- 

K(E,rl) = 5 (n) + --- 

cp (E,ll) = Cpl (11) + --- 

Ci(EJl) = Cl (11) + --- 

(7.59a) 

(7.59b) 

(7.59c) 

(7.59d) 

(7.59e) 

(7.59fl 

(7.59g) 

(7.59h) 

(7.59i) 

Since y2s is a function of downstream flow, it cannot be determined by 

the stagnation solutions. Thus, a value of y2s = 0 is assumed initially. 

This assumption is removed by iterating on the solution by using the 

previous shock standoff distances to define yzs. 

The new form of x-momentum and energy equations in the S,I'I can be 

written as 

a2w 
-+ al an 
h2 

E+a2W+a =O 3 (7.60) 

For x-momentum, W = u and coefficients a 1, a2# ad a3 are exactly the 

same as given in 1151. For the enthalpy equation, W = E and again a1 

and a 2 are the same as defined in [15] but a 3 is given by 

a 3 = (Pr ,ls~~s/~ls~lsl (Pr,l/iil) r wYls) w/ad 

+ 2Y/(l + rlYls)l + ~~~~~~~~~~~~~~~~~~~~~ (a$ad -(7.61] 

Other stagnation streamline equations are the same as given in [15]. It 

should be noted that at the body surface p1 = 1 and s2 = 0. 
. 
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& mentioned earlier, the governing second-order partial different- 

ial equations are solved by employing an implicit finite-difference 

method. For this purpose, the shock layer is considered as a network 

of nodal points with a variable grid space in the n-direction. The 

scheme is shown in Fig. 6 where m is a station measured along the body 

surface and n denotes the station noxmal to the body surface. The deriv- 

atives are converted to finite-difference form by using Taylor's series 

expansions. Thus, unequal space central difference equations in the 

n-direction at point m, n can be written as 

'X-1 
Ann (*'ln-1 + dun) Wm,n+l - An + An,) Wm,n-l 

*‘n - - *Yl 1 
+ Ann*nnol 'm,n 

(7.62&I 

a2w, = 2 ? w 
an2 n Arln(Arln + A'L~-~) 'm,n+l - ArlnArln-l m,n 

2 
+ An n-l(Ann + Ann-lI 'm,n-1 

W OWmln $m = mtnAE - , 

(7.62b) 

(7.62~) 

A typical difference equation is obtained by substituting the above 

equations in Eqs. (7.47) or (7.60) as 

W m,n = - CDn/Bn) - (A~/B~)w m,n+l - (C&l Wm n I - 
1 (7.63) 

where 

An = (2 + alAnno I/ [An, (Ann + Annol) 1 
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Bn - - I2 - a1 (An, - Ann-1I l/h~,Aa~-~) - a2 - a4/AEm 1 

‘n - (2 - alAnn)/iASn-l (Ann + *nn-1) 1 

'n - CL3 - a4w*-l,n'AEm-l 

Now, if it is assumed that 

W *EW +F 
ma n m,n+l n (7.641 

or 

ill m,n-1 -E n-lWm,n +F n-l (7.651 

then by substituting 4. (7.65) into 4. (7.631, there is obtained 

W ma - t-A,/ ‘Bn + CnEnwl )I Wm * n+l 

+ (-D n - 'nFn-1 ,/(Bn + CnEn-l) 

By comparing 4s. (7.64) and (7.661, one finds 

(7.66) 

En - -A,/ 'Bn _ CnEnkl) (7.67) 

Fn * (-D - CnFnol)/ ‘Bn + CnEn-J n (7.68) 

Bow, since El and F1 are known from the boundary conditions, En and 

Fn can be calculated from Eqs. (7.67) and (7.68). The quantities Wm n 
, 

at point m, n can now be calculated from 4. (7.64). 

The overall solution procedure starts with evaluation of the flow 

properties tiediately behind the shock by using the Bankine-Hogoniot 

relations. With known shock and body surface conditions, each of the 

second-order partial differential equations are integrated numerically 

by using the tridiagonal formalism of Eg. (7.47) and following the pro- 

cedure described by 4s. (7.63) to (7.68). As mentioned before, the 

solutions are obtained first for the stagnation streamline. With this 

solution providing the initial conditions, the solution is marched down- 

stream to the desired body location. The first solution pass provides 
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only an approximate flow-field solution. This is because in the first 

solution pass' the thin shock-layer form of the nomal maaentum equation 

is used, the stagnation streamline solution is assumed to be independent 

of downstream influence, the term dy,/dE is equated to zero at each body 

station, and the shock angle a is assumed to be the same as the body 

angle 8. All these assumptions are removed by making additional solu- 

tion passes. 

In the first solution pass, the viscous shock-layer equations are 

solved at any location m after obtaining the shock conditions (to estab- 

lish the outer boundary conditions) frau the precursor region solutions. 

The converged solutions at station m-l are used as the initial guess for 

the solutions at station m. The solution is then iterated locally until 

convergence is achieved. 

For the stagnation streamline, guess values for dependent variables 

are used to start the solution. In the first local iteration, both 

tays/aC) and (aW/aC) are asstrmed to be zero. The energy equation then 

is integrated numerically to obtain a new temperature. By using this 

temperature, new values of thermodynamic and transport properties are 

calculated. Next, the x-momentum equation is integrated to find the u' 

component of velocity. The continuity equation is used to obtain both 

the shock standoff distance and the 5 component of velocity, The 

pressure 5 is determined by integrating the normal manentum equation. 

The equation of state is used to determine the density. For example, 

the integration of the stagnation streamline continuity equation from 

0 to 9 results in 

((1 + Yls~~2PlsVlsP11V1 = (-2ylsPlsuls)A (7.691 
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where 

A = In (1 + ylsnl i;liildn 
0 

'c7.701 

This equation gives the v-velocity component along the stagnation 

streamline. However, integration of the continuity equation from 

n - 0 to n = 1 results in 

u + Yls12Plsvls = - 2PlsUlsYls(B + a (7.711 

where 

B=L1;;l;dn,C=yls L1 ;l+drl 

The shock standoff distance can be obtained from the solution of 

Eq. (7.71) as 

-(2vls+2Buls]+~(2vls+2Buls)2-4(vls+2Culs~vls]1'2 

2 (vls+2Culs) 

. 
(7.72) 

Similarly, other quantities at the stagnation streamline are obtained. 

With known stagnation streamline solution and body surface and 

shock conditions, the above procedure is used to find solutions for any 

body location m. The downstream shock standoff distance and the v-velocity 

component are obtained by integrating the continuity equation in the 

n-direction from 0 to 1, and o to n respectively. Integration of the 

continuity equation frcm n = 0 to n = 1 results in 

&-[y: cos e psus oJ1~;ndn + ysrPSus.o?~~dn 

- (1: + y, COS 0) [yApsUs - (1 + ysK)psVs] 

By defining, for station m 
1 

c1 = cos 8 psus ; ;&dn; C2 = rp u s s .&kdn 

(7.73) 

and denoting the same.relations by C3 and C4 for station m-l, Eq. (7.73) 

can be expressed in terms of a difference equation as 



t(CIY; + C2ys), - (C3y; + C4~,),-~/U 

- rp s s sm + =os 8 P,u,Y&Y~~ - fPsvs u y' _', 

- rPsVs”Ysm - cos 8 p v y s s sm - COS 8 psVsKy-& 

This can be expressed in a quadratic form as 

(AA)&, + (BB)y + (CC) = 0 

where 

(7.74) 

(7.75) 

AA = cl + cos BKP~v~AS 

BB = C2 + rpsVsK& - cos 8 ~,u~Y~AS + cos 8 psvsA& 

cc = -[C3 (Y~):-~ + C4 (Y,),,~ + rPsUsy;AS - wsvsAS1 

The shock standoff distance at station m is obtained frua Eq. (7.75) as 

Ysm = ( - (BB) + [(BB)~ - 4m~) 0~)1~'~1/20w (7.76) 

The v-velocity component can be obtained in a similar manner; Integra- 

tion of the continuity equation from 0 to y gives 

& C,P Ysm(r + y,,n cos B)psusGdnl 

+ (I: + ysmn ‘3% e) [ (1 + T)YsmK) (P,V,$ 

- Y~nPsusP~l = 0 (7.77) 

As before, this can be expressed in terms of a difference equation as 

1 t m), - (KK)m,1 l/AS) + wrnG + (JJ) = 0 m (7.78) 

where 

(II) m = (r + Ysmn COS e) (1 + Ysm9K)PsVsP 

(JJ); = - (r + y,,n cos 8 )y;m~psusP~ 

ocK1, PgP Y sm (r + y,,n cos B)psusGdn 

Thus, the v-velocity component 'at each point on the station m can be 

obtained from Eq. (7.78). Other quantities at station m are obtained 
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by8SiBilar&nner. Am mentioned before, the first pass is only an 

approxbate solution &cause qf several inhekent assumptions. These 

usuuptions are remove d by iteration imthe next pass. For the sub- 

mqumnt solution passes, the shock angle and y2s are given by 

0 - 8 + t&y~/(l + uy="' 

Y 82 - %3 - YslV4Cw 

(7.79) 

(7.80) 

Thm fiaw di8grru for computation procedure are shcrwn in Fig. 4 and 

?igs. 7 to 13. 
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91 
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r I I I 
/ lQITRH;; ~~h:'lNG 1 1 [ ] DH, ; DK, 

I DH, = A,, - h,, ( 1 1 D; = ps2 - DH,/Slop 1 
c I 

I 
I 

4 
1 

Slop = D% -08, 

ps, - Qst 

t 

W = %a - h,.,, 

Yes f-l RETURN 

Fig. 7 Flow chart for subroutine SHOCK for shock-layer 
solution. 
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+ 
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Pig. 8 Flow chart for subroutine SHOKLY for shock-layer solution. 
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I dNS -I NS(M + 1) - NStH) 
bx 

-INTEsNATE mEEY EQ. 
4 

I I INmGRATE Emma EQ. I 

PXS4 EHEw;y EQ. GET h(M,N) 
i 

f 

INITIAL GUESS Tg0l.N) 

I CALL EmNALP hg0l.N) 
t- 1 

Fig. 9 Flow chart for subroutine ENERGY for shock-layer 
solution. 
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El NS2 - 0 
NS2 m NS(3) - NS(1) 

4FZ 

INTEGRATE EQ. (2.31) FOR r 

1 

INTEGRATE EQ. (7.71, FOR i? 

t 

It?'fEGRATE 4. (7.72) FOR NS1 

k 

I I I 
t 

I 

4 
t 

I INTEGRATE EQ. (2.31, FOR Tf I 

1 1 INTEGRATE EQ.;7.781 FOR V 

INlEGPATE EQ. (2.32, FOR F 
I I INTEGRATE EQ. .(2.32, FOR P 

‘I 

c 
SOLVE STATE EQUATION FOR 5; 

Fig. 10 Flow chart for subroutine MOMENTM for shock-layer 
solution. 
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+ 

I COP3lK.N) - X2(lh/& 

N-2 

QPP(N) = 0 

NS - IS + 1 

QPP(N) + QP(H5.N) + QPPW) 

I 
ns - 1 

QPltN) - 0 I 

. 
INmamK mm QP1ms.r) 

(SW Ciq.13) 
+ 

. 

QPltNl - QPl(H5.W + QPL(~) 

INTlNaATK ?OR prrcn, 
hn tiq. 13 ) 

I 

I @'X(N) = 2nfpPIN) + QPlm) + (p(a)J 

Fig. 11 Flow chart for subroutine RADIATION for shock-layer 
solution. 
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Fig. 12 Flow chart for subroutine CHEMIST for shock-layer 
solution. 
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x = fvK2 {v"/[exp(v) - 1]} dv 

'Kl 

/ 

N 

QP (M5,N) = COF2(MS,N) COFl(M5,N) E, 
0 

[lN aj (N')dNj dE 

I- 
N N 

QPl(M5,N) = COF3(MS,N) E, aj(N')dN' de 

0 I 

/ 

N 

W(N) = COF2(K,N) COF3(K,N) E, 

0 

[i"aj(N'IdNj de 

Fig. 13 Definition of integrals used in subroutine RADIATION. 
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8. RESULTS AND DISCUSSION 

For this study, the entry body considered is a 4S" hyperboloid 

blunt body which enters the Jovian atmosphere at a zero degree angle of 

attack. The body surface is assumed to'be gray having a surface emit- 

tance of 0.8. Unless specified otherwise, the surface temperature is 

taken to be uniform at 4,5643. For the case of chemical equilibrium in 

the shock layer, all results were obtained by considering a body nose 

radius of s = 23 cm. For chemical nonequilibrium conditions, however, 

three different nose radii (12, 23, and 45 cm) were considered. The 

ncminal composition of the free stream atmosphere was considered to be 

85 percent hydrogen and 15 percent helium for most calculations. Elowever, 

comparative results were also obtained for the 89: percent hydrogen and 

11 percent helium naninal atmosphere. 

First, results are presented for variation in flow properties only 

in the precursor region. These results were obtained with known values 

of radiative heat flux at the shock front. Next, chemical equilibrium 

shock layer results, obtained by considering slip conditions, are pre- 

sented. With these results providing the basis for further investigation, 

complete precursor region-shock layer coupled solutions were obtained for 

both chemical equilibrium and chemical nonequilibrium in the shock layer. 

These results are presented in the last two sections of this chapter. 

8.1 Precursor Region 

In the precursor region, the results were obtained only for the range 

of entry velocities for which free-stream and shock conditions were avail- 

able (see Table l), As mentioned before, precursor-region results were 

obtained by employing both the small perturbation method and the thin 
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layer approximation. First small perturbation results are presented, 

and then some key results of this method are compared with the results 

of the thin layer approximation. 

.By employing the small perturbation method, the perturbation quan- 

tities Vls, P1, C8, Cg , 
2 

and T1 were calculated numerically and the 

results are illustrated in Figs. 14-22. In Figs. 14-18, perturbation 

quantities are shown as a function of distance from the shock for differ- 

ent altitudes and a constant entry velocity of 35 lan/sec. In Figs. 1943, 

the perturbation quantities (just ahead of the bow shock] are illustrated 

as a function of the free-stream velocities. Since p1 = -Viz, separate 

results were not illustrated for the density perturbation. From these 

figures it is evident that the magnitude of perturbation quantities, in 

general, depend on the distance from the shock, altitude of entry, and 

entry speeds. 

Figures 14-18 show that at a fixed entry velocity, the perturbation 

effects are greater for lower altitudes and at locations just ahead of 

the shock. This, however, would be expected because the number densities 

of participating species are greater at lower altitudes and at these 

altitudes most radiative energy from the shock gets absorbed in the 

immediate vicinity of the shock front. At higher altitudes, perturba- 

tion effects are significant to a larger distance from the shock front. 

This is because, at these altitudes, the number densities of participating 

species are small and radiation effects are felt farther into the free- 

stream. Specific results presented in Figs. 14-18 indicate that the use 

of the small perturbation theory is justified in determining the velocity, 

density, mass fraction and total enthalpy variations. For example, just 
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Velocity perturbation as a function of distance 
from the shock at different altitudes and a 
constant free-stream velocity. 
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Fig. 15 Pressure perturbation as a function of distance 
from the shock at different altitudes and a 
constant free-stream velocity. 
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Fig. 16 Mass fraction of H as a function of distance from 
the shock at different altitudes and a constant 
free-stream velocity. 
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Mass fraction of H+ as a function of distance from 
the shock at diffe?ent altitudes and a constant free- 
stream velocity. 
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Fig. 18 Temperature perturbation as a function of distance from 
the shock at different altitudes and a constant free- 
stream velocity. 
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ahead of the shock, the value of (vfl=) is 0.9992 for 2 - 95 km and is 

equal to 0.99975 for 2 - 150 km. Similarly, HT = 6.8 x 10 -3 for 
.l 

2= 95 kmand 
$1 

= 2.4 x 10 -3 for Z - 150 Ian (i.e., 0.682 increase in 

total enthalpy at 95 km and 0.24% increase at 150 km). The static 

pressure and temperature variations, however, cannot be considered small, 

This is because for 2 = 95 km, P1 = 2 and T1 - 300 K, and for 2 - 150 Ian, 

p1 =0.64andT =94K. 1 For these variations, therefore, one could 

question the validity of the small perturbation theory. 

For different altitudes of entry, perturbation results (just ahead 

of the shock) are illustrated in Figs. 19-23 as a function of entry 

velocities. These results again indicate that the perturbation effects 

are greater for lower altitudes. As would be expected, for any specific 

altitude, the effects are larger for higher entry velocities. This is 

a direct consequence of greater radiative energy transfer from the shock 

to the free-stream at high entry speeds. For the most part, variations 

in the velocity, mass fractions, and total enthalpy again are seen to be 

small. For example, for an entry body at an altitude of 95 km, the total 

enthalpy of the gas (HT ) entering the shock wave is increased from about 
1 

0.68 percent at V = 36 lan/sec to 1 percent at V = 38 km/get. For 

2 = 150 km, however, H 
T1 

increases from 0.24 percent at 35 km/set to 

0.66 percent at 42 km/set. The variations in the static pressure and 

temperature, in some cases, are seen to be several times greater than the 

ambient values. These large variations, however, occur for conditions 

where dissociation is high and the validity of the entire theory is 

questionable [1,21. 

By employing the governing equations (Eqs. 2.9-2.13) and the spec- 

tral information of Sec. 6.2.1, numerical results were obtained for 
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Fig. 20 Mass fraction of H (just ahead of the shock) as a 
function of free-stream velocity for constant 
altitudes. 



24 28 32 36’ 40 
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Fig. 21 Mass fraction of Hi (just ahead of the shock) as a 

function of free-stream velocity for constant 
altitudes. 93 
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Fig. 25 Comparison of results for velocity variation in 
the precursor zone. 
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Fig. 26 Comparison of results for pressure variation in the 
precursor zone. 
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velocity, pressure and temperature variations for different values of 

9 at s = 0. Specific results for an altitude of Z - 116 Ian are can- 

pared in Figs. 24-26 with corresponding results of the small perturba- 

tion theory. For the range of parameters considered, the results 

obtained by the two procedures are seen to be in excellent agreement. 

It is obvious from these results that either approach could be utilized 

in the investigation of the precursor region flow field. It was noted 

in Sec. 7.1 that for the Jupiter's entry conditions, the general govern- 

ing equations of the small perturbation theory reduced to the case of 

simple plane source. As such, use of this method to Jupiter's entry 

case is restricted to one-dimensional analyses. The advantage of thin 

layer approximation procedure is that it is physically more convincing 

and it can be extended easily to three-dimensional and axisymmetric 

cases. 

8.2 Effects of Shock and Body Slip Conditions 

By invoking the boyd and shock slip conditions, results for varia- 

tion in the shock layer flow properties were calculated for higher alti- 

tude entry conditions. Some important results of this investigation are 

presented in this section. Results are presented first for the velocity 

and temperature jumps at the body,surface. Following this, results are 

presented for the properties immediately behind the shock. Next, the 

effects of radiation on convective heating at higher altitudes are dis- 

cussed. Finally, to assess the influence of slip conditions, results 

are presented for the convective and radiative heating. It should be 

emphasized here that the term slip conditions (or slip boundary condi- 

tions), as used in this study, implies both the body and the shock slip 

conditions. 
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The variation in the surface slip velocity is illustrated in Fig. 27 

as a function of the entry altitudes. Since u-velocity is almost zero 

at the stagnation streamline, the results presented in Fig. 27 have been 

obtained for location (or station) 3 of Fig. 6. Figure 27 clearly illus- 

trates that the condition of no slip is not satisfied at higher altitudes. 

Since t is normalized by the shook value (i.e., i = u/us), the magnitude 

of velocity slip can be expressed as a percent of u . It is evident from 
S 

Fig. 27 that about 8 percent velocity slip occurs at 2 - 261 and only 

0.1 percent at Z = 143 inn. 

The temperature jump at the body surface is shown in Fig. 28 for 

different entry altitudes. The results presented in this figure are for 

the case with no radiation and, in obtaining these results, the body 

surface temperature was taken to be 4,000 IC. A temperature jump of about 

18 percent (i.e., VT = 680 K) is noted at the stagnation point for entry 

conditions at Z =261 lnu. At lower altitudes, however, the temperature 

jump is seen to be relatively small. For example, at Z = 116 km, the 

temperature jump is only 3 K. 

Figures 29-31 show the temperature jump, velocity slip, density and 

total enthalpy changes just behind the shock. It is evident freon Fig. 29 

that when the altitude is lower than 225 Ian, the shock slip conditions 

are not important. However, a significant temperature difference is 

noted at Z = 261 km. The results presented in Fig. 30 illustrate that 

both the u and v velocity components are influenced by the slip condi- 

tions. Since both the temperature and velocity components decrease just 

behind the shock, the slip conditions result in an increase in density 

and a decrease in total enthalpy. This is clearly evident from the 

result of Fig. 31. 
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Figure 32 shows how the convective heat flux is effected by radia- 

tion. The results indicate that at low altitudes, the convective heat 

flux decreases with increasing altitude and at high altitudes it increases 

with the altitude. This is because at different ranges of altitude, the 

temperature distribution is rearranged by the radiation effects. It is 

noted that a maximum of 50 percent change in convective 'heat transfer 

occurs at 2 = 261 km and a 25 percent change at 2 = 225 km. 

Figure 33 shows how the radiative heat flux is affected by slip 

boundary conditions. It is seen that the effect is very small at alti- 

tudes lower than 225 km. It is found that there is approximately 50 

percent reduction in radiative heat flux due to the shock temperature 

jump at 261 km. 

The effects of slip boundary conditions on convective heat flux 

towards the body (along the body surface) are illustrated in Figs. 34 

and 35, for the cases with and without the radiation interaction. The 

results indicate that the slip conditions start to effect the convective 

heat flux at 2 = 225 Jcn (E = 0.09064) by approximately 8 percent (at 

stagnation point) and this increases to.27 percent at Z = 261 km 

tE = 0.2129). The effect is seen to increase with the distance away 

from the stagnation point, and inclusion of radiation is seen to suppress 

this influence. When the altitude is less than 225 km, the effect of 

slip boundary conditions is relatively small and it can be neglected. 

8.3 Influence of Precursor Heating 

on Viscous Equilibrium Flow 

By considering the conditions of chemical equilibrium in the shock 

layer, governing equations of both the precursor and shock layer regions 
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were solved for physically realistic Jovian entry conditions. Results 

of ccmplete parametric study are presented in this section. First, the 

results are presented for quantities just behind the shock wave, and 

then a few results of flow variables within the shock layer are pre- 

sented. Next, results are presented for the entire shock-precursor 

region. Finally, a few results are presented to'demonstrate the influ- 

ence of precursor heating on the magnitude of different heat fluxes in 

the shock layer. 

The radiative flux from the shock layer towards the precursor 

region is found to be highest at the stagnation line shock location. 

Results of the radiative flux from the shock front are shown in Fig. 36 

for different altitudes of entry. As would be expected, precursor 

heating results in a higher radiative flux at the shock front. It is 

seen that the radiative flux reaches a maximum value for an altitude 

of about 116 km, and the largest precursor effect CPE) of about 8 percent 

is found to be for this altitude. This is a direct consequence of the 

free stream and entry conditions at this altitude. For other entry 

conditions (altitudes), precursor effects are seen to be relatively 

lower. 

Figure 37 shows the shock standoff variation with distance along the 

body surface for different entry altitudes. The shock standoff distance, 

in general, is seen to decrease with increasing altitudes. This is 

because higher entry velocities are associated with higher altitudes. 

The precursor heating results in a slight increase in the shock standoff 

distance (a maximum of about 2 percent for Z = 116 km) because the 

density of the shock layer is slightly reduced. 
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The conditions just behind the shock are illustrated in Figs? 38791 

as a function of distance along the-body for different entry altitudes. 

For z - 116 km, Fig. 38 shows that precursor heating.increases the 

enthalpy by a maximum of about 2 percent at the stagnation line. The 

change in shock temperature is shown in Fig. 39 for different altitudes. 

As would be expected, precursor heating results in a relatively higher 

temperature. The effect of precursor heating on the pressure just behbd 

the shock was found to be small and, therefore, it could not be shown in 

a figure conveniently. Since the pressure essentially remains unchanged, 

precursor heating results in a decrease in the density (see Fig. 40) 

mainly because of an increase in the temperature. It was found that 

precursor heating had no significant influence on the u-component of 

Velocity, but the v-component is slightly increased (see Fig. 41) as a 

result of decrease in the shock density. 

Variations in pressure, density, velocity, and chemical species 

across the shock layer are shown in Figs. 42-44 for an altitude of 

2 = 116 km. Results presented in these figures are normalized by their 

shock values and they show that precursor effects are felt throughout 

the shock layer. Results presented in Figs. 42 and 43 for two body 

locations (5 = 0 and 1) indicate the relative change in pressure, density, 

and velocities as compared to their shock values. For 5 = 0, Fig. 44 

shows that precursor heating slightly decreases the concentration (mole 

fraction) of atomic hydrogen and increases the concentration of ions and 

electrons throughout the shock layer. 

Variations of temperature, pressure, density, and velocity along 

the stagnation streamline in the entire shock layer-precursor zone are 

illustrated in Figs. 45-48 for different altitudes. Since higher entry 
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velocities are associated with higher altitudes, precursor effects, in 

general, are found to be larger for higher altitudes. The results for 

the precursor region show a dramatic increase in the pressure and 

temperature but only a slight change in the density and velocity. The 

changes are largest near the shock front because a major portzon of 

radiation from the shock layer gets absorbed in the immediate vicinity 

of the shock front. Figures 45 and 46 show that, in spite of a large 
c 

increase in the temperature and pressure in the precursor region, pre- 

cursor heating does not change the temperature and pressure distribution \ 

in the shock layer dramatically. The change in temperature, however, is 

significant and (as would be eected) the maximum change occurs just 

behind the shock. There is a slight change in the pressure near the body 

but virtually no change closer to the shock. Figure 47 shows that the 

change in density in the shock layer is higher for higher altitudes and 

towards the shock. As discussed before, precursor heating results in a 

slight decrease in the shock layer density. Virtually no change in the 

u-component of shock layer velocity was found, but, as shown in Fig. 48, 

the v-component is slightly increased. 

The effects of precursor heating on different heat fluxes in the 

shock layer are illustrated in Figs. 49-51. These results clearly 

demonstrate that precursor heating has a significant influence on 

increasing the heat transfer to the entry body. This increase essentially 

is a direct consequence of higher shock layer temperatures resulting from 

the upstream absorption of radiation. Figure 49 shows the variation of 

radiative and convective heat flux with distance along the body surface 

for Z = 116 km. It is noted that the precursor heating results in a 
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7.5 percent increase in the radiative flux and about 3 percent increase 

in the convective flux to the body at the stagnation point. The increase 

in heat transfer at other body locations are relatively lower. A 

similar conclusion can be drawn from the results presented in Fig. 50 

for the radiative flux towards the shock and the body for two body. 

locations (E = 0 and 1) at Z = lI6 kn. Results of radiative and con- 

vective heat flux at the body (for 5 = 0) are illustrated in Fig, 51 for 

different altitudes of entry. The radiative flux results are seen to 

follow the trend exhibited in Fig, 36 for radiation at the shock front. 

The convective heat flux, however , is seen to increase slowly with the 

altitude up to Z = 131 Jan and thereafter decrease with increasing alti- 

tudes. The precursor effect is found to increase the radiative heating 

by a maximum of about 7.5'percent at Z = 116 km and the convective 

heating by 4.5 percent at Z = 131 lap. 

8.4 Influence of Precursor Heating 

on Viscous Nonequilibrium Flow 

The influence of precursor heating on the flow phenanena around a 

Jovian entry body was investigated under the conditions of chemical non- 

equilibrium in the shock layer. As mentioned before, the entry body 

considered for this study is a 45" hyperboloid blunt body. The body 

enters the Jupitor's atmosphere at zero angle of attack. The two naainal 

atmospheres considered for Jovian entry consist of 85 and 89 percent hydro- 

gen (by mole fraction) respectively. Also, to investigate the influence 

of change in the body nose radius on the thickness of the nonequilibrium 

layer, three different nose radii (12, 23, and 45 cm) were considered. 

To illustrate the important features of the nonequilibrium analysis, most 
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results were obtained for entry conditions which closely correspond to 

the peak heating. conditions (i.e., for conditions at 2 = 116 km). How- 

ever, a few illustrative results have also been obtained for other 

entry conditions. Equilibrium and nonequilibrium results are presented 

first for variation of different properties in the shock layer. Results 

are then presented to illustrate the influence of precursor heating. 

Finally, results are presented for variation of different heat fluxes 

in the shock layer under the influence of both the nonequilibrium con- 

ditions and the precursor heating. 

Two assumptions can he made about the molecular hydrogen entering 

the shock layer immediately behind the shock. One criteria is tp assume 

that chemical reactions are "completely frozen" and initial canposition 

of hydrogen just behind .the shock corresponds to the free stream value. 

The second 'criteria is to consider that all hydrogen molecules have been 

dissociated immediately behind the shock. This is referred to as the 

"half-frozen" condition. Nonequilibrium results obtained for these two 

cases (for entry conditions at Z = 116 km and for 85 percent hydrogen 

ncmtinal atmosphere) are illustrated in Figs. 52 to 54 as a function of 

the normal coordinate at the stagnation point. Figure 52 shows the mole 

concentration of different species across the shock layer. It is evi- 

dent fran this figure that molecular hydrogen is canpletely dissociated 

vithin about 4 percent of the total shock standoff distance fran the 

shock wave. This is referred to as the dissociation zone (or the 

dissociated region). The variation in nondimensional v-velocity canpon- 

ent and density is illustrated in Fig. 53. Since molecular weights 

change rapidly in the dissociated region, there is an increase in 
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velocity and a decrease in density near the outer edge of the dissocia- 

tion zone. The temperature distribution is shown in Fig. 54. 1tis 

noted that the temperature just behind the shock wave.reaches a value 

of approximately 45,000 K in the completely frozen condition. After a 

short interval, however, all hydrogen molecules are dissociated and 

temperature drops to about 25,000 K. Next, ionization occurs and, as a 

result of this, temperature continues to decrease until it reaches the 

equilibrium value. From the results presented in Figs. 52-54, it is con- 

cluded that the half-frozen and canpletely frozen assumptions are quite 

close except in the dissociated region neax the shock wave, and that 

the half-frozen flow computation is a reasonably good assumption for 

conditions of chemical nonequilibrium at altitudes near the peak heating 

region. 'rhus, all other results presented in this section have been 

obtained by considering only the half-frozen condition behind the shock. 

As discussed in the previous section, the shock standoff distance 

(for a given body nose radius1 varies with the altitude of entry and 

entry velocity. It should be pointed out here that, in general, the 

shock standoff distance increases with increasing the body nose radius. 

For entry conditions at Z = 116 km, equilibrium and nonequilibrium 

results for the shock standoff distance are illustrated in Fig. 55 as 

a function of the coordinate along the body surface. It is noted that 

the shock standoff distances for equilibrium and with radiation are con- 

siderably lower than for nonequilibrium and with no radiation. This, 

h-ever, would be expected because shock-layer densities are greater for 

radiation and equilibrium conditions than for no radiation and nonequili- 

brium conditions. 
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Variations in chemical species across the shock layer are shown 

in Figs. 56-59 for differeut conditions. For entry conditions at 

2 = 116 kp, results presented in Figs. 56 aud 57 show that the non- 

equilibrim~layer is about 25 percent of the total shock-layer thickness 

for no radiation case and about 50 percent for the case with radiation. . 

This is hcause inclusion of radiation results in a different terapera- 

ture distribution in the shock layer. This point.will be discussed 

'further while presenting results for the temperature variation. Near 

the wall, the mass fractions of atomic hydrogen and electrons are higher 

for nonequilibrium conditions with radiation. This is because cold gases 

near the wall absorb relatively more radiative heat flux in noneguili- 

brim case. For no radiation case, a comparison of results presented 

in Figs. 56 and 58 reveal that the nonequilibrium layer increases from 

25 percent at Z - 116 km to about 40 percent at Z = 143 km. This is 

because density is lower at higher altitudes and, therefore, it will 

take a relatively longer time to reach eguilibrium condition. For 

Z - 116 km entry conditions, Fig. 59 shows the species concentrations 

for three different body nose radii (12, 23, and 45 cm). These results 

indicate that the thickness Cor range) of the noneguilibrium layer de- 

creases with increasing nose radius. In particular, it is seen that the 

thickness is about 40 percent for Rn = 12 cm but it is only 10 percent 

for.R, = 43 cm. This is because the shock standoff distance is propor- 

tional to the body nose radius and the relaxation time for chemical 

reactions is about the same for all cases. 

Temperature distributions across the shock layer are illustrated in 

Figs. 60-62 for different conditions. For the case with no radiation, 

the heavy particle and electron temperature variations across the shock 
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tion) in Fig. 60 for different entry conditions. The results show that 

in the absence of radiation, the nonequilibrium temperature is higher 

than the equilibrium temperature throughout the shock layer for each 

entry condition. It is also noted that the electron temperature, which 

is lower than the heavy particle temperature during early stages of 

ionization, asymptotically approaches the heavy particle temperature 

during the later stages of ionization. As discussed in the previous 

section, the temperature distribution in the shock layer is relatively 

higher for higher altitudes because of higher entry velocities. For 

entry conditions at 2 = 116 Inn, the electron temperature distributions 

(without and with radiation) are shown in Figs. 61 and 62 for three 

different body nose radii. As noted earlier, the thickness of the non- 

equilibrium layer decreases with increasing nose radius. Also, for a 

given nose radius, inclusion of radiation increases the thickness of the 

nonequilibrium layer. This is because the loss of radiation frau the 

shock layer results in an entirely different temperature distribution 

(see Fig. 62) and leaves relatively less energy for dissociation and 

ionization of the gas. 

For entry conditions at 2 = 116 km, Fig. 63 shows the mass fraction 

of atomic hydrogen and hydrogen ion along the stagnation streamline in the 

precursor region. While equilibrium results indicate that only 5 percent 

hydrogen is dissociated and 0.018 percent is ionized, the nonequilibrium 

results show that 15 percent hydrogen is dissociated and 0.8 percent 

ionized. It should be pointed out that the composition of the precursor 

gas will be different for different entry conditions. It should be 

emphasized here again that in investigating the precursor region flow 
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properties and their influence on the shock layer flcrw phencmana, tba 

entire precursor-shock layer solutions are obtained by SteratWa pro- 

cedures. 

For the case with radiation and for entry conditions at 2 = 116 kai 

the heavy particle and electron temperature variations across the shock 

layer are illustrated in Fig. 64 along with the equilibrium tempaxature 

distribution. In ccmparision with results of ,Fi'g, 60, it 2s aeah that 

in the present case, the nonequilibriuia temperature is lower tFian the 

equilibrium temperature in certain portions of the shock. Tbia is a 

direct consequence of the radiation cooling (i.e., radiat&on loss to tha 

free stream) of the shock layer. Also, in this case, the nonequilibrium 

temperature is slightly higher than the equilibrium temperature in the 

vicinity of the wall. This is because cold gases near the till absorb 

radiation frap the -high temperature region of the ahock layer. As would 

be expected, pfecuraor heating results fn a slightly higher shock-layer 

temperature diatributfon. 

Variations of temperature, preaaure, and density along the atagna- 

tion streamline in the entire shock layer-precursor zone are illustrated 

in Figs. 65-68,for different conditions. These results show that pre- 

cursor effects are higher for the nonequilibrium condftiona. This, 

however, would be expected since in this case, the radiative heat flux 

toWards the precursor region is considerably higher. The shock-layer 

nonequilibrium condition significantly influences the temperature and 

pressure variations in the precursor zone, but its effects oh density 

changes are quite small. AS noted earlier, in the shock layer; non- 

equilibrium results approach the corresponding equilibrium values at 
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about 25 percent of the shock layer thickness fran the shock wave. For 

the equilibrium case, the influence of precursor heating on shock-layer 

temperature, pressure, and density variations is discussed in the pre7 

vious section. 

For a comparision of the shock-layer flow phenomena for the two 

nominal compositions of the Jovian atmosphere, illustrative results were 

obtained for entry conditions at Z = 116 km. Results for the temperature 

variatioi immediately behind the shock and for the radiative heat flux 

across the shock layer axe illustrated in Figs. 69-71. It is evident 

from Fig. 69 that the shock temperature is lower by about 2 percent for 

case of 89 percent hydrogen atmosphere. This is because, in this case, 

relatively more energy is required to dissociate the molecular hydrogen. 

Since the shock temperature is lower in this case; the radiatve heat 

fluxes (q+ as well as q-1 are lower for both equilibrium and nonequili- 

brim conditions (see Figs. 70 and 71). 

To investigate the extent of heating on an entry body, the varia- 

tions in radiative heat flux in the shock layer were calculated for 

different conditions. As discussed earlier, the chemical nonequilibrium 

effects are more important with small body nose radius and for higher 

altitude entry conditions. Results for radiative flux towards the shock 

and body are shown in Fig. 72 for Rl = 12 cm and Z = 116 km. The 

results indicate that, in the nonequilibrium case, the radiative heat 

flux is increased to about 70 percent toward the-body and almost 2.5 

times toward the shock (i.e., toward the precursor region). Results for 

radiative heating of the body for Ri = 23 cm and Z = 143 km are shown in 

Fig. 73. The results show that the heat flux is about three times higher 
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for the nonequilibrium conditions. This is a direct consequence of the 

higher temperature in the nonequilibrium layer near the shock. 

To investigate the influence of precursor heating on viscous non- 

equilibrium shock-layer flaw phenanena, specific results were obtained 

for the peak heating entry conditions and for au entry body with a nose 

radius- of R* = 23 cm. n 
These are presented here as final results of the 

present study. 

The radiative heat flux from the shock layer towards the shock front 

and the precursor regiouis shown in Fig. 74 for both equilibrium and 

nonequilibrium conditions. The results clearly indicate that heat flux 

toward the precursor region is considerably higher for nonequilibrium 

conditions. This is again a direct consequence of higher nonequilibrium 

temperature in the shock layer. As discussed before, precursor heatiug 

results in a higher radiative flux at the shock front. The results of 

Fig. 74 indicate that precursor heating results in a 15 percent increase 

in radiative flux in the nonequilibrium case while only 8.5 percent 

increase is noticed for the equilibrium condition. 

The results of equilibrium and nonequilibrium radiative flux towards 

the body (along the stagnation line) are illustrated in Fig. 75. Although 

it is realistic to calculate the radiative flux based on the electron 

temperature, results (for the case with no precursor effects) have been 

obtained also by using the heavy particle temperature only for cmpara- 

tive purposes. The nonequilibrium results are seen to be significantly 

higher than the equilibrium results. This. is primarly due to the high 

temperature region near the shock where nonequilibrium temperature over7 

shoots occur. 
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Figure'76 shows the variation of radiative and convective flux with 

distance along the body surface. The radiative as well as convective 

heat transfer to the body surface is seen to be enhanced by the non- 

equilibrium conditions. As discussed above, the increase in radiative 

heating is a direct consequence of higher electronic temperature. For 

the case with no radiation, the convective heat flux toward the body was 

found to be the same for equilibrium and nonequilibrium conditions. For 

the case with radiation, however, Fig. 76 shows that the convective heat 

flux for the nonequilibrium case is about 20 percent higher than the 

corresponding equilibrium value at the stagnation point. This is because 

the cold gas near the wall absorbs higher radiative flux from the shock 

layer under the nonequilibrium conditions. As discussed before, the 

influence of precursor heating is enhanced due to nonequilibrium condi- 

tions. Figure 76 shows that precursor heating results in a 10.5 percent 

increase in the radiative flux at the stagnation point in the nonequili- 

brium case while only about 7 percent increase is noted for the equili- 

brium case. 

For the entry conditions considered in this study, therefore, it 

is logical to conclude that nonequilibrium heating of the body is signi- 

ficantly ,higher than equilibrium heating. Results similar to this were 

also obtained by Grose and Nealy 1761 for Venusian entry conditions. 

For certain Jovian entry conditions, 'results presented in 18,593 indicate 

that nonequilibrium heating is considerably less than the equilibrium 

heating. This obviously is in contradiction to the present findings. 

It should be pointed out that for the entry conditions considered in 

this study, the temperature just behind the shock is very high and all 

hydrogen molecules are completed dissociated. Under these conditions, 
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I$ line 'emissions are higher than for the equilibrium conditions. This 

is because, in addition to high temperature, the number density of atamic 

hydrogen is considerably higher than the equilibrium value. Thus, find- 

ings of the present study appear to be completely justified. 
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CONCLUDING REHARKS 

The main objective of this study was to investigate the influence 

of precursor heating on the entire shock layer flow phenomena around a 

Jovian entry body under physically realistic conditions. For this pur- 

pose, the flow in front of the entry body was divided into three regions, 

the shock layer, the precursor zone, and the free stream. The problem 

was formulated by considering the chemical equilibrium as well as non- 

equilibrium composition of the shock layer gas. 

In the precursor region, flow phenunena was investigated by 

employing the small perturbation theory of classical aerodynamics and 

the thin layer approximations of hypersonic flow. For Jovian entry 

conditions, one-dimensional results obtained by the two methods were 

found to be in good agreement for the range of parameters considered. 

The results, in general, indicate that for certain combinations of entry 

speeds and altitudes of entry, the precursor effects cannot be ignored 

while analyzing flows around Jovian entry bodies. The usefulness of the 

thin-layer approximation in analyzing the precursor region flow is 

demonstrated. The main advantage of this method is that it is physically 

more convincing and its use can be extended easily to axisynnnetric and 

three-dimensional cases. 

In the shock layer, results of flow variables were obtained along 

the body and the bow shock and across the shock layer for different 

entry conditions. The results show that the slip boundary conditions 

(both at the shock wave and the body) should be used when the entry 

altitudes are higher than 225 km. Specific results for the chemical 

equilibrium condition indicate that, in most cases, precursor heating 

165 



has a maximum influence on flow variables (except the pressure) at the 

stagnation line shock location. It was found that while pressure 

essentially remains unchanged in the shock layer, the precurs'or heating 

results in an increase in the enthalpy, temperature, and v-camponent of 

velocity, and a decrease in the shock layer,density. For the entry con- 

ditions considered in this study, results clearly demonstrate that pre- 

cursor heating has a significant influence on increasing the heat 

transfer to the entry body. Chemical nonequilibrium results reveal that 

there exists a nonequilibrium layer of considerable thickness in the 

shock layer region and inclusion of the radiative heat flux term in the 

energy equation increases the thickness of this layer. Under nonequili- 

brium conditions; temperature (heavy particle as well as electronic) 

overshoots occur near the shock wave. As a result of this, the radiative 

as well as convective heat transfer to the body surface is increased 

significantly. The influence of precursor heating is enhanced due to 

nonequilibrium conditions; a 9.5 percent increase in the stagnation point 

radiative heating has been observed at an altitude of 116 km. 

For further studies, it is suggested that the precursor region flow 

phenomena be investigated without making the thin layer approximation, 

Since precursor region is relatively thin for most entry.conditions, this 

improvement probably will not change the findings of the present study. 

However, it would be advisable to consider turbulent flow in the shock 

layer, especially for analyzing the flow away from the stagnation region., 

Also, a more general model for radiative transport (instead of the tan- 

gent slab approximation) should be used, and conditions of different 

angles of attack for the entry body should be considered. 
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